Sesquiterpene lactone-containing extracts from two chicory cultivars show different anthelmintic activity in vitro against *Ostertagia ostertagi*

Miguel Peña-Espinoza*, Ulrik Boas*, Andrew R. Williams*, Stig M. Thamsborg*, Heidi L. Enemark×

*National Veterinary Institute, Technical University of Denmark (DTU)
×Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen
×Norwegian Veterinary Institute, Oslo, Norway

Background:
- Mechanisms behind in vivo anthelmintic (AH) effects of forage chicory are poorly understood
- Bioactive plant compounds like sesquiterpene lactones (SL) are believed to play a role
- Lacking evidence of direct activity of well-characterised SL-containing extracts towards parasitic nematode stages and against cattle nematodes

Objective:
- To test the direct inhibitory activity of SL from two forage chicory cultivars on free-living and parasitic stages of the pathogenic cattle nematode *Ostertagia ostertagi*

Results: Larval feeding inhibition assay (LFIA)
- Both extracts demonstrated a dose-dependent inhibition of larval feeding
- Spadona extract was 4-fold more potent than Puna II extract (P<0.0001)

Results: Chemical profile SL-containing extracts by LC
- Chemical characterisation by LC of extracts from chicory 'Spadona' (A) and 'Puna II' (B)

Results: Adult motility inhibition assay (AMIA)
- Both extracts demonstrated a dose-dependent inhibition of worm motility
- Spadona extract showed a significantly higher potency and exerted faster worm paralysis than Puna II extract at all time points (P < 0.0001)
- No morphological damage was observed in the cuticle of chicory exposed worms (scanning electron microscopy)

Conclusions:
- SL-containing extracts from forage chicory induced direct and dose-dependent inhibitory effects against feeding and motility of *O. ostertagi* L3 and adults, respectively, but not on the exsheathment of L3
- Distinct AH activity and SL-profiles were detected in extracts from two chicory cultivars. This may help to identify the most active anti-parasitic compound(s)

Further research:
- Mechanisms of AH action of SL-containing extracts from chicory?
- Are different AH activities between cultivars preserved in vivo?
- Are SL the only anti-parasitic compounds in forage chicory?

Acknowledgments:
miap@vet.dtu.dk

Research funded by EMIDA ERA-NET, Becchi-CPH2012-11, 30 million Euros.

Background:

- Mechanisms behind *in vivo* anthelmintic (AH) effects of forage chicory are poorly understood.
- Bioactive plant compounds like *sesquiterpene lactones* (SL) are believed to play a role.
- Lacking evidence of direct activity of well-characterised SL–containing extracts towards parasitic nematode stages and against cattle nematodes.

Objective:

- To test the direct inhibitory activity of SL from two forage chicory cultivars on free-living and parasitic stages of the pathogenic cattle nematode *Ostertagia ostertagi*.

Results: Larval feeding inhibition assay (LFIA)

- Both extracts demonstrated a dose-dependent inhibition of larval feeding.
- Spadona extract was 4-fold more potent than Puna II extract (P<0.0001).

Results: Chemical profile SL-containing extracts by LC

- Chemical characterisation by LC of extracts from chicory 'Spadona' (A) and 'Puna II' (B).

Results: Adult motility inhibition assay (AMIA)

- Both extracts demonstrated a dose-dependent inhibition of worm motility.
- Spadona extract showed a significantly higher potency and exerted faster worm paralysis than Puna II extract at all time points (P < 0.0001).
- No morphological damage was observed in the cuticle of chicory exposed worms (scanning electron microscopy).

Conclusions:

- SL-containing extracts from forage chicory induced direct and dose-dependent inhibitory effects against feeding and motility of *O. ostertagi* L3 and adults, respectively, but not on the exsheathment of L3.
- Distinct AH activity and SL-profiles were detected in extracts from two chicory cultivars. This may help to identify the most active anti-parasitic compound(s).

Further research:

- Mechanisms of AH action of SL-containing extracts from chicory?
- Are different AH activities between cultivars preserved in vivo?
- Are SL the only anti-parasitic compounds in forage chicory?

Acknowledgments:

- *miap@vet.dtu.dk*

Research funded by EMIDA ERA-NET, Becchi-CPH2012-11, 30 million Euros.