Sesquiterpene lactone-containing extracts from two chicory cultivars show different anthelmintic activity in vitro against Ostertagia ostertagi

Miguel Peña-Espinoza1,2, Ulrik Boas1, Andrew Williams2, Stig Thamsborg2, Heidi Enemark1,3

1National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark, 2Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark, 3Norwegian Veterinary Institute, Oslo, Norway

Mechanisms behind reported in vivo anthelmintic effects of chicory (Cichorium intybus) in ruminants are poorly understood but it is likely that plant compounds, like sesquiterpene lactones (SL), play a role. Objectives: The aim was to test the inhibitory activity of SL-containing extracts from two chicory cultivars on free-living and parasitic stages of Ostertagia ostertagi. Methods: Leaves from chicory cv. Spadona and cv. Puna II were freeze-dried and SL extracted with methanol/water. Resulting extracts were incubated with cellulase enzyme and SL were purified from other plant compounds by normal solid-phase extraction. Purified extracts were dissolved in DMSO.

O. ostertagi eggs from a mono-infected calf were hatched and first-stage larvae (L1) were used in a larval feeding inhibition assay (LFIA), while L3 cultured from faeces were used in a larval exsheathment inhibition assay (LEIA). O. ostertagi adult worms recovered post-mortem were used for motility inhibition assays (AMIA) and worm motility was evaluated after 6, 24 and 48 h of incubation (37°C). In all in vitro assays, decreasing concentrations of chicory extracts in PBS (1% DMSO) were tested in triplicates with 1% DMSO in PBS as negative controls. Chemical profiles of the extracts were analysed by liquid chromatography (LC). Results: In the LFIA, Spadona-extract inhibited larval feeding at significantly lower concentrations than Puna II-extract (EC50=31.5 [CI=25.9-38.3] vs. EC50=121.1 [CI=95.2-153.8] extract/mL; p<0.0001). In the LEIA, extracts from neither of the two cultivars interfered with the exsheathment of L3 at any of the tested concentrations. In the AMIA, Spadona-extract showed a significantly higher potency and exerted faster worm paralysis than Puna II-extract at all time points when tested at equal concentrations (p<0.0001). Preliminary LC analyses revealed different SL profiles of the extracts and further chemical characterization is undergoing. Discussion: This is the first study confirming direct effects of SL against O. ostertagi. However, the observed anthelmintic effects of SL-containing extracts from chicory seem to be stage-specific as L1 and adult O. ostertagi but not L3 were affected. Different anthelmintic potency of SL from different chicory cultivars may help the identification of the most active(s) molecule(s) and the selection of cultivars with higher antiparasitic potential.