

Feeding chicory (Cichorium intybus) selectively reduces Ostertagia ostertagi infections in cattle

Miguel Peña-Espinoza^{a*}, Olivier Desrues^b, Tina Hansen^b, Stig M. Thamsborg^b, Heidi L. Enemark^{a,c}

^aNational Veterinary Institute, Technical University of Denmark (DTU) ^bDepartment of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen ^cNorwegian Veterinary Institute, Oslo, Norway

Background:

- In vivo anthelmintic (AH) effects of forage chicory have been reported in sheep and deer, but not in cattle
- Potential anti-parasitic effects of bioactive plants like forage chicory may be direct or indirect through improved nutrition

Objectives:

To test the AH effects of a forage chicory diet against gastrointestinal nematodes in calves fed with iso-proteic and iso-energetic diets (Study 1) and in calves under grazing conditions (Study 2)

Conclusions:

> Study 1: Feeding with chicory silage significantly reduced O. ostertagi but not C. oncophora adult burdens in calves, without compromising animal growth

> Study 2: Grazing of pure chicory significantly reduced excretion of O. ostertagi eggs and adult burdens in calves, but poor animal growth was observed

30000

-20000

10000

> The time course of infection indicates that main effect of a forage chicory diet is on survival of *O. ostertagi* adults

Study 1: AH effects of ensiled forage chicory in calves experimentally infected with Ostertagia ostertagi and Cooperia oncophora and fed with iso-proteic and iso-energetic diets

Methods:

 2-4 months-old calves were allocated into chicory (n=9) or control (n=6) groups and fed with ensiled chicory or ryegrass hay, resp., from start of study until slaughter. Calves were stabled throughout the study

*Infective dose: 10,000 O. ostertagi L3 + 66,000 C. oncophora L3

- Crude protein(CP)/energy (MJ) intakes were balanced between groups based on daily measurements of dry matter (DM) intake
- Faecal egg counts (FEC) were performed from D14 and calves were slaughtered at D40 for worm recovery

Chicory group (n=9)

10000 5000 21 day post-infection

30000

25000

Geo mean FEC adjusted for faecal DM (FECDM) in chicory and control groups (Error bars: 95% CI)

Results:

- No differences in weight gain between groups until D21
- From D21 until slaughter, chicory and control groups had mean growth rates of 768 and 370 g/day, resp. (*P*=0.004)
- No differences in serum pepsinogen, FEC or DM/CP/E intakes between groups
- Chicory-fed calves had a significant reduction in the worm burden of O. ostertagi (P<0.001) but not of C. oncophora (P = 0.1), compared with controls

Total 32170 (±4072) (±9483) 18708 (± 341) (±7709) (±16495) (± 654) ****P* < 0.001

Post-mortem mean adult worm counts in chicory and control groups (Error bars: 95% CI)

Study 2: AH effects of grazing a pure forage chicory sward in calves experimentally infected with Ostertagia ostertagi

Methods:

 4-6 months-old calves were allocated into chicory (n=10) or control (n=10) groups and grazed pure-chicory or ryegrass/clover fields, resp., from start of study until slaughter

Study design:

 Faecal egg counts (FEC) were performed from D17 and calves were slaughtered at D36 for worm recovery

Preliminary results:

- Estimated weight gains in chicory and control groups: 366 and 748 g/day, resp. (*P*<0.001)
- No differences in FEC between groups until D20
- \circ From D22 onwards: significant FEC reduction in the chicory group (P<0.05)
- No differences in serum pepsinogen between groups
- Marked reduction in O. ostertagi adult counts in the chicory group

