Den anden fredag hver måned sætter LandbrugsAvisen fokus på faglig økologi i et samarbejde med Internationalt Center for Forskning i Økologisk Jordbrug og Fødevaresystemer, ICROFS og Videncentret for Landbrug.

Øko-høns kan få glæde af proteinfoder

Hønsefoder produceret på rødkløver har bedre sammensætning af aminosyrer end soja. Det viser forsøg, som arbejder med at udvinde protein fra rødkløver økologiske høns.

Af Erik Fog, Videncentret

 for Landbrug, og Mette Lübeck, Aalborg Universitet.Rodklover har potentialet til at blive en meget populær proteinkilde til okologiske hons og svin. Det viser forsog, som er gennemfort i projektet OrganoFinery under forskningspakken Organic RDD2 OrganoFinery arbejder på at udvikle et helt nyt koncept til forsyning af okologiske hons med dansk produceret protein, og dermed bidrage til at lose en af de helt store udfordringer i det okologiske jordbrug. Samtidig vil projek tet også kunne bidrage til en bedre kvælstofforsyning og en bedre klimaprofil i det okologiske jordbrug.

Rødkløver - det nye sort

I OrganoFinery afproves og tilpasses en teknik til udvinding af protein fra lucerne, som er udviklet af Pauli Kiel fra firmaet Biotest. Teknikken går ud på, at saften presses ud
derefter syrnes. I den proces bliver proteinerne udfældet, og kan derfor adskilles fra saften. I den oprindelige proces brugte man svovlsyre til syrningen, men i OrganoFinerys okologiske proces er man nu gået over til en naturlig mælkesyregæring i stedet.
OrganoFinery har også erstattet lucerne med rodklover, fordi rodklover kan danne store mængder protein på de fleste danske jorder, og den kan desuden indgå som en værdifuld afgrode i de okologiske sædskifter. Specielt på planteavlsbedrifter og bedrifter med hons eller svin, vil det være en stor forbedring at kunne producere okologisk protein ved at dyrke rodklover. Det vil sandsynligvis være en mere sikker metode end at dyrke hestebonner eller lupin. Med den nye teknik kan rodklover blive en meget populær afgrode i de okologiske sædskifter.

Lovende resultater

I år er både ren rodkløver og kløvergræs med meget rødklover, og syrningsprocessen med mælkesyrebakterier blevet testet på forsøgsbasis. Processen ser ud til at fungere som onsket, og der er høstet en tilfredsstillende mængde protein fra bladsaften. Aller-

9 Rødkløver har

 potentialet til at blive en meget populær proteinkilde til økologiske høns og svin.resammensætningen i rodkløverproteinet ser ud til at være bedre end sojaprotein, når det skal anvendes til fjerkræfoder. Der udfores også laboratorieforsøg med at lave biogas af de faste plantedele fra presningen og af den "brunsaft", som bliver tilbage, når proteinerne er trukket ud af plantesaften.

Udvikling af et helt koncept

OrganoFinery-projektet, har som målsætning at udvikle et samlet koncept til produktion af okologisk protein fra grontafgroder. Det bliver også undersøgt, hvilke afgroder, der giver de bedste resultater i form af proteinhøst og proteinkvalitet, hvor indholdet af amminosyren methionin er centralt, når det skal bruges til hons. I markforsøg vil også blive testet, hvordan de afgroder bedst passes ind i de økologiske sædskifter i praksis.
Det udvundne protein vil blive testet i foderforsog med okologiske honer, dels i forsøg på Foulum, dels i nogle okolo-
giske honsebesætninger Som nævnt vil resterne fra presningen og proteinudvindingen blive afprøvet som råstof til biogasproduktion, så de stoffer kan omsættes til både penge og energi og dermed bidrage til, at losningen bliver meget bæredygtig. Endelig vil projektet belyse de forretningsmæssige perspektiver og give anbefalinger til, hvordan systemet kan udbredes og dermed fremme den okologiske produktion

Man kan folge projektet på dets hjemmeside under ICROFS side om dansk forskning. Mette Lübeck er lektor ved Aalborg Universitet og leder af forskningsprojektet OrganoFinery. Erik Fog er landskonsulent for Økologi på Videncentret for Landbrug.

Fakta

OrganoFinery-projektet, der løber fra 2014 til og med 2017.

Projektet OrganoFinery ledes af Aalborg Universitet i samarbejde med Videncentret for Landbrug og både Københavns Universitet, Aarhus Universitet samt firmaerne Biotest, Fermentationexperts, AgroTech og IFAU bidrager.

