Foods of animal origin, like pork meat (1), are one of the most important sources of Campylobacter human infections. C. coli is the predominant species in pigs (2). The routine use of antimicrobials in conventional production has been attributed to the emergence of antimicrobial-resistant bacterial pathogens (3). The objectives of this study were to assess the occurrence of Campylobacter in organic and conventional pig productions, and to evaluate their antimicrobial resistance and genetic diversity in these two productions.

Results

Occurrence in colon content was not significantly different between organic (76.8%) and conventional pigs (74.0%). Among the 120 carcasses, only one conventional carcass was contaminated by Campylobacter. All the Campylobacter isolates were C. coli. 266 C. coli isolates were characterized by CMI and PFGE: 138 and 124 from colon content of respectively organic and conventional pigs and 4 from carcass of conventional pigs. Only 10 isolates were pan-susceptible. No isolate was resistant to CHL and only one isolate from conventional pig was resistant to GEN.

The percentage of isolates resistant to STR was high and similar in both productions (Fig. 1). We observed a significant difference between the two productions for resistance to NAL and CIP ($\chi^2_p<0.05$) and for ERY and TET ($\chi^2_p<0.01$) (Fig. 1). For these four antibiotics, resistance was higher for Campylobacter isolated from conventional pigs.

The most frequent resistance profile was resistance to streptomycin with tetracycline (Fig. 2) (24.2% for conventional isolates and 33.3% for organic isolates). Isolates from conventional pigs were significantly more frequently resistant to tetracycline and erythromycin, often in association with other resistances: 53.1% of isolates from conventional pigs were resistant to 3 or more antibiotics families compared to 26.8% from organic pigs (Fig. 3).

Discussion/Conclusion

This study showed that occurrence and diversity of Campylobacter in organic and conventional pigs was similar. High genetic diversity in C. coli in pigs was previously described (6).

Resistance and multi resistance observed for conventional pigs isolates are commonly identified (2,7). The lower level of antibiotic resistance for organic pigs have also been previously described (2) and may be related to the restricted use of antibiotics in this production and / or to the colonization of organic pigs with susceptible environmental strains.

Acknowledgment

This study was conducted in the frame of ERA NET CORE organic II project "Safeorganic". The authors thank the persons in charge of the slaughterhouse and M. Even, E. Eveno and E. Boilotext from Anses for sampling help.

References

(2) Thakur and Babeyres (2005) J Clin Microbiol 43:5705-14