Participatory Breeding of Cotton for Organic and Low External Input Conditions

Content

Introduction
- Background and problem statement
- bioRe - FiBL research partnership
- Participatory innovation development (PID)

Cotton Pre-Trials 2010
- Objective & Methodology
- Results and discussion

Cotton Trials 2011
- Objective & Methodology
- Results and discussion

Conclusion
Introduction

Background and problem statement

- India has become the second largest cotton producer just after China in 2008
- A success that is largely due to joint efforts of farmers, breeders, agronomists, entomologists, pathologists and physiologists
- A large diversity of *Gossypium hirsutum*, *arboreum* and *barbadense* hybrid and varieties was developed over the years
- Today, Indian farmers grow 90% *hirsutum*, mainly hybrids, of which 90% is GM cotton
- The genetic diversity has reduced drastically since the introduction of the first GM cotton hybrids
- Hybrids are bred for high yield potential soils and depend to a large extent on external inputs (i.e. fertiliser, pesticide, irrigation water) in order to realize maximal yield per acre. These hybrids might be suboptimal under low external input and rainfed farming as different traits are needed under these conditions

Introduction (cont.)

- Conversely, over the last two decades India has become the world’s largest organic cotton producer (up to 80% of world’s organic cotton)
- Despite rapid increase of organic cotton markets, the erosion of conventional seed by GM cotton continues to threaten the development of India’s organic cotton sector
- The private seed companies have little interest to invest in non-GM cotton and farmers have lost their traditional knowledge on seed production
- Today, cotton farmers depend on a diminishing supply of non-GM cotton seed
- Risk of physical and genetic contamination of organic cotton with GM cotton and the loss of locally adapted genetic resources increased rapidly
- Therefore, immediate action is needed to improve seed availability, seed access and seed quality of non-GM cotton varieties adapted to organic and low input conditions
Introduction (cont.)

bioRe - FiBL research partnership

- bioRe partners in an international research programme with the Research Institute of Organic Agriculture (www.systems-comparison.fibl.org)
- Goal: “To enhance know-how on advantages and limitations of different agricultural production systems”
- Expected Outcome 1: “Solid agronomic and socio-economic data on major organic and conventional agricultural production systems in selected project regions are at hand”
- Expected Outcome 2: “New locally-adapted technology innovations for major organic production systems are available and ready for dissemination”
Introduction (cont.)

Participatory innovation development (PID)

- Participatory innovation development is the triangulation between farmers, breeders and extension agents in management and cultivar improvement.
- Participatory plant breeding (PPB) is an opportunity for developing locally adapted cultivars suited to organic and low external input conditions and for increasing genetic diversity by decentralized selection.

Content

Introduction
- Background and problem statement
- BioRe - FiBL research partnership
- Participatory innovation development (PID)

Cotton Pre-Trials 2010
- Objective & Methodology
- Results and discussion

Cotton Trials 2011
- Objective & Methodology
- Results and discussion

Conclusion
Cotton Pre-Trials 2010

Objectives & Methodology

Objective: To investigate the physiological development, assess yield and cotton fibre quality of available organic, conventional and GM hybrid under low (organic) and high (conventional) external input conditions

Organic, conventional and GM hybrids are tested in an on-station mother trial with a completely randomised block design

Cotton hybrid and varieties tested in 2010

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JK DURGA</td>
<td>H12</td>
<td>SURAJ</td>
<td>HY 102</td>
<td>JK DURGA (Bt)</td>
</tr>
</tbody>
</table>

Cotton Pre-Trials 2010 (cont.)

Objectives & Methodology (cont.)

<table>
<thead>
<tr>
<th>Low Input</th>
<th>High Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>8500 kg compost/acre</td>
<td>2500 kg compost/acre</td>
</tr>
<tr>
<td>Neem extract + cow urine spray, Garlic-onion-chili repellent, Top-Ten</td>
<td>Pesticide (e.g. Nitrobenzene, Imidachlorprid, Profenofos) + Fungicide</td>
</tr>
</tbody>
</table>

Low Input (organic)

High Input (conventional)

Randomise Complete Block Design (RCBD)

Planting spacing: 1 m x 0.9 m
Cotton Pre-Trials 2010 (cont.)

Results & discussion

JK DURGA BT

Low Input

High Input

H-12

Low Input

High Input
Cotton Pre-Trials 2010 (cont.)

Results & discussion

HY-102

Low Input

High Input

Seed Cotton (kg/acre)

Bars correspond to stand error of the mean (SEM)
Cotton Pre-Trial (cont.)

Results & discussion

- Cultivars performed slightly better under conventional treatment
- JK Durga & H-12 both achieved higher yield than the Suraj & Hy-102
- Overall JK Durga performed best
- JK Durga non-GM performed better than JK Durga GM in both low input & high input treatments
- Selection of JK Durga for long-term experiment, cropping season 2011-12

Content

Introduction

- Background and problem statement
- bioRe - FiBL research partnership
- Participatory innovation development (PID)

Cotton Pre-Trials 2010

- Objective & Methodology
- Results and discussion

Cotton Trials 2011

- Objective & Methodology
- Results and discussion

Conclusion
Cotton Trials 2011

Objectives & Methodology

Objectives:

• To introduce participatory breeding approaches
• To test improved cotton cultivars in smallholders’ organic cotton fields
• To gain information about the suitability of different types of cotton cultivars for organic and low input farming conditions in Central India

Cotton Trials 2011 (cont.)

Objectives & Methodology

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Species</th>
<th>Cultivar Type</th>
<th>Mother Trial</th>
<th>Baby Trial</th>
<th>Demo Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK Durga</td>
<td>G. hirsutum</td>
<td>Hybrid</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>JK Durga (Bt)</td>
<td>G. hirsutum</td>
<td>Hybrid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-6</td>
<td>G. hirsutum</td>
<td>Hybrid</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H-10</td>
<td>G. hirsutum</td>
<td>Hybrid</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H-12</td>
<td>G. hirsutum</td>
<td>Hybrid</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ankur-651</td>
<td>G. hirsutum</td>
<td>Hybrid</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rasi 2</td>
<td>G. hirsutum</td>
<td>Hybrid</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rasi 2 (Bt)</td>
<td>G. hirsutum</td>
<td>Hybrid</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-22{102}</td>
<td>G. hirsutum</td>
<td>Variety</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZCH-8</td>
<td>G. hirsutum</td>
<td>Variety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-504-48-91</td>
<td>G. arboreum</td>
<td>Variety</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-320-5</td>
<td>G. arboreum</td>
<td>Variety</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAHB-1</td>
<td>G. hirs. x G. barbadense</td>
<td>Hybrid</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAHB-2</td>
<td>G. hirs. x G. barbadense</td>
<td>Hybrid</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Objectives & Methodology

Exp. 1. tetraploid G. *hirsutum* hybrids are compared with G. *hirsutum* varietal lines, interspecific hybrids, and native diploid G. *arboreum* varieties under high and low input conditions on-station to test for genotype x management interaction.

Low Input (organic)
High Input (conventional)

<table>
<thead>
<tr>
<th>Low Input</th>
<th>High Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>8500 kg compost/acre</td>
<td>2500 kg compost/acre</td>
</tr>
<tr>
<td>125 kg urea/acre, 210 kg SSP/acre, 65 kg MOP/acre</td>
<td>Pesticide (e.g. Nitrobenzene, Imidachlorprid, Profenofos) + Fungicide</td>
</tr>
<tr>
<td>Neem extract + cow urine spray, Garlic-onion-chili repellent, Top-Ten</td>
<td></td>
</tr>
</tbody>
</table>

Morphological Assessments
Quality Assessments

<table>
<thead>
<tr>
<th>Stem diameter, Leaf shape, Hairiness, Plant height, Pest and Diseases</th>
<th>Diameter of cotton ball, Seed and Lint index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneity within cultivar</td>
<td>Uniformity and Maturity</td>
</tr>
<tr>
<td>Monopodia/Sympodia, Harvesting time, No. of cotton balls per plant, Weight of cotton balls per plant</td>
<td>Length, Strength, and Finesse of Fibre</td>
</tr>
</tbody>
</table>
Cotton Trials 2011 (cont.)

Objectives & Methodology

Exp. II. five G. hirsutum hybrids are tested by 20 organic cotton farmers of the PID network at different soil fertility levels

Exp. III & IV. 36 cotton cultivars and five F2 populations are examined on the bioRe farm
Cotton Trials 2011 (cont.)

Preliminary Results

- During plant development the *G. hirsutum* hybrids were more homogeneous and showed better growth than the other cultivar types.
- Interspecific *G. hirsutum* *x barbadense* hybrids were short in growth and heavily attacked by pest and diseases, while the *G. arboreum* varietal lines were very inhomogenous in the on-station trial (Exp. I).
- Also on-farm (Exp. III) *G. hirsutum* varietal lines showed best plant development and early flowering, while the *G. barbadense* varietal lines were most infested by pests and diseases.
- The *G. arboreum* varietal lines were very healthy but yielded comparatively small cotton balls.

Conclusion

- General high interest of farmers to participate in on-station and on-farm testing of cotton varietal lines and hybrids.
- On-station mother trials are managed by the researchers, while on-farm baby trials are managed by the farmer.
- A network of interested farmers need to be established, who are regularly trained in on-farm research and supported by extension agents.
- Farmers, researchers and extension agents together monitor the on-station and on-farm trials and evaluate cotton varieties and hybrids.
- However, the extension agents and farmers need to be introduced into plant breeding by the researcher to support and profit from decentralized participatory breeding efforts.
Contact Details:

Rajeev Baruah
bioRe Association India
Tehsil Kasravad
District Khargone – 451228
Madhya Pradesh, India
Phone: +91 98 2607 4664
Email: rajeev.baruah(at)gmail.com

Dr. Monika Messmer
FiBL - Research Institute of Organic Agriculture
Ackerstrasse / P.O. Box
CH-5070 Frick, Switzerland
Phone: +41 62 865 0443
Email: monika.messmer(at)fibl.org

Dr. Dionys Forster
FiBL - Research Institute of Organic Agriculture
Ackerstrasse / P.O. Box
CH-5070 Frick, Switzerland
Phone: +41 62 865 0452
Email: dionys.forster(at)fibl.org

Rajeev Verma
bioRe Association India
Tehsil Kasravad
District Khargone – 451228
Madhya Pradesh, India
Phone: +91 99 2605 2714
Email: rajeev.verma.biore(at)gmail.com

Dr. Shreekant S. Patil
University of Agricultural Sciences, Dharwad
Dharwad - 580 005
Karnataka, India
Phone: +91 94 4883 7120
Email: ssapadvance(at)indiatimes.com