This work was inspired by

the celebration of golden jubilee year of establishment

of

Punjab Agricultural University (PAU), India

which pioneered the green revolution on Indian sub-continent

and

we dedicate this book to

all the hard working farmers

and dedicated agricultural researchers

across globe
Section I
Agricultural Biodiversity, Organic Farming, and New Crops

1. Functional Agrobiodiversity: The Key to Sustainability?
 Paolo Bàrberi
 1. Introduction 3
 2. Agricultural Sustainability at the Onset of the Third Millennium 4
 3. Agrobiodiversity: A Conceptual Framework 4
 3.1 Genetic Agrobiodiversity 5
 3.2 Species Agrobiodiversity 6
 3.3 Ecosystem Agrobiodiversity 7
 3.4 Limitations of the OECD Definition of Agrobiodiversity 7
 4. From Agrobiodiversity to Functional Agrobiodiversity 8
 4.1 Functional Biodiversity: A Plethora of Definitions 8
 4.2 Functional Agrobiodiversity: A Methodological Approach 9
 5. Functional Agrobiodiversity in Practice 11
 5.1 Genetic Agrobiodiversity 11
 5.2 Species Agrobiodiversity 12
 5.3 Ecosystem Agrobiodiversity 14
 6. Functional Agrobiodiversity: Opportunities and Bottlenecks 15
 6.1 What Could Favor Functional Agrobiodiversity? 15
 6.2 What Could Hinder Functional Agrobiodiversity? 16
 7. Conclusions 17
 Acknowledgements 17
 References 17

2. Organic Agriculture—Driving Innovations in Crop Research
 Dionys Forster, Noah Adamtey, Monika M. Messmer, Lukas Pfiffner, Brian Baker, Beate Huber, and Urs Niggli
 1. Introduction 21
 2. Soil Fertility and Organic Farming in the Tropics—Challenges and the Way Forward 23
3. Plant Breeding Strategies for Organic and Low External Input Farming 26
4. Functional Biodiversity and Pest Management in Organic Farming 30
5. Agricultural Innovation—The Need for Transdisciplinary Research and Development 33
6. Outlook 37
Acknowledgements 38
References 38

3. Guar: An Industrial Crop from Marginal Farms

1. Introduction 47
2. Origin, Genetics, and Breeding 48
3. Water and Salt Stress 49
4. Seed Composition 50
5. Galactomannan Properties, Biosynthesis, and Degradation 50
6. Preparation and Applications of Guar Gum 52
 6.1 Medicinal Uses 52
7. Biotechnology for Guar Gum Modification 55
8. Summary and Future Prospects 56
References 56

Section II
Effective Management of Resources (Nutrients and Water) and Crop Modelling

4. Nitrogen Use as a Component of Sustainable Crop Systems
Amritbir Riar and David Coventry

1. Introduction 63
2. Principles of Crop Sustainability in Rainfed Farming 64
 2.1 Nitrogen Use Efficiency (NUE) 64
 2.2 Water–N Relationship 65
 2.3 Crop Rotations 66
 2.4 Fertilization to Optimize Yields 67
 2.5 No-Tillage Systems 67
3. Improving NUE and On-Site N Management 68
 3.1 Pre- and Post-Anthesis Water Use and N Uptake 68
 3.2 Agronomic Strategies to Improve NUE 69
4. Targeting Crop Sustainability 72
Acknowledgement 73
References 73
Sukhdev S. Malhi, Tarlok S. Sahota, and Kabal S. Gill

1. Introduction 77
2. Management Practices 79
 2.1 Crop Diversification/Rotation 79
 2.2 Crop Species/Cultivars 80
 2.3 Crop Residue Return 81
 2.4 Intercropping Non-Legumes with Legumes 81
 2.5 Mixed Farming (Dairy, Beef Cattle or Swine, and Cropping) Systems 83
 2.6 Agroforestry (Integration of Trees with Field Crops or Animal Production Systems) 84
 2.7 Summer Fallow 84
3. Agricultural Organic Amendments 84
 3.1 Compost/Manure 85
 3.2 Green Manure 87
4. Industrial Organic Products/Byproducts 89
 4.1 Alfalfa Pellets 89
 4.2 Thin Stillage, Distiller Grain (Byproduct of Ethanol), Fish Food Additive, and Glycerol (Byproduct of Biodiesel) 89
 4.3 Wood Ash (Byproduct of Forest Industry) 90
5. Mineral Amendments 91
 5.1 Phosphate Amendments 91
 5.2 Lime, Gypsum, and Elemental S 92
 5.3 Biological Fertilizers/Biofertilizers (Microbial Products/Inoculants) 93
6. Summary of Research Findings, Gaps, and Future Needs 95
7. Conclusions 97
References 98

6. Effective Management of Scarce Water Resources in North-West India
Sudhir-Yadav, Balwinder-Singh, Elizabeth Humphreys, and Surinder Singh Kukal

1. Introduction 103
2. The Development of Water Scarcity for Irrigation 104
3. Reasons for Ground Water Depletion in NW India 106
 3.1 Increase in the Area Under Cultivation 106
 3.2 Shift in Cropping Patterns 106
 3.3 Injudicious Use of Surface and Ground Water 108
 3.4 Degradation of Ground Water Quality 108
 3.5 Rainfall Distribution and Variability 109
 3.6 Energy Subsidies for Farmers 109

References
4. “Real” Water Savings 111
5. Improving Management of Water Resources 111
 5.1 Reducing Water Losses from Canal Networks 112
 5.2 Conjunctive Use of Surface and Ground Water 113
 5.3 Artificial Recharge of Groundwater 113
 5.4 Improved Crop Management Technologies 114
 5.5 Rainfall Forecasting 119
 5.6 Policies to Improve Water Management: Water Pricing and Allocation 120
6. Conclusions 120
References 121

7. Modeling for Agricultural Sustainability: A Review
 Mukhtar Ahmed, Muhammad Asif, Arvind H. Hirani, Mustazar N. Akram, and Aakash Goyal
 1. Introduction 127
2. Major Simulation Models 130
 2.1 APSIM (Agricultural Production System Simulator) 130
 2.2 Ceres Wheat 130
 2.3 DSSAT (Decision Support System for Agrotechnology Transfer) 132
 2.4 SALUS (System Approach to Land Use Sustainability) 133
 2.5 NDICEA (Nitrogen Dynamics in Crop Rotation in Ecological Agriculture) 134
 2.6 Rhizome: A Model of Clonal Growth 135
 2.7 LINTUL (Light Interception and Utilization Simulator) 136
 2.8 WaTEM (Water and Tillage Erosion Model) 140
 2.9 SPAC (Soil Plant Atmosphere Continuum) 141
3. Outlook 143
References 143

Section III
Molecular, Biotechnological, and Industrial Approaches for Enhancement of Crop Production and Quality

8. Biotechnological Approaches for Increasing Productivity and Sustainability of Rice Production
 D. S. Brar and G. S. Khush
 1. Advances in Rice Biotechnology 152
2. Approaches for Increasing Yield Potential of Rice 153
 2.1 Developing Hybrids with Higher Yield Potential 154
 2.2 Introgression of Yield-Enhancing Loci/Wild-Species Alleles 155
 2.3 Pyramiding of Cloned Genes/QTLs for Yield-Related Traits 156
 2.4 C₄ Rice—Modifying Photosynthetic Systems to Raise Yield 157
3. Mapping Genes/QTLs and Marker-Assisted Breeding in Rice 158
 3.1 Breeding Against Biotic Stresses 159
 3.2 Breeding for Tolerance to Abiotic Stresses in Rice 161
 3.3 Other Approaches to Facilitate MAS 164
4. Broadening the Gene Pool of Rice Through Wide Hybridization 164
5. Role of Anther Culture in Rice Breeding 165
6. Genetic Engineering Approaches for Sustainable Rice Production and Enhanced Nutritional Qualities 167
7. Advances in Functional Genomics Support Rice Breeding 170

References 171

9. Biofortification of Staple Crops
 Vishal Chugh and Harcharan S. Dhaliwal

1. Introduction 177
 1.1 Magnitude and Causes of Micronutrient Malnutrition 177
 1.2 Strategies for Alleviating Micronutrient Malnutrition 179
2. Biofortification: A New Tool to Reduce Micronutrient Malnutrition 179
 2.1 Conventional and Molecular Breeding Approaches for Biofortification 180
 2.2 Genetic Engineering Approaches 183
 2.3 Physiological and Molecular Basis for Micronutrient Accumulation in Grains 184
 2.4 Sequestration of Mineral in Endosperm 186
 2.5 Bioavailability of Micronutrients 186
3. Micronutrient Concentration and Grain Yield 189
4. Conclusion 189
References 190

10. Nutrient-focused Processing of Rice
 Nadina Müller-Fischer

1. Introduction 197
2. Nutrient Composition of Rice Fractions 198
 2.1 Macronutrients 199
 2.2 Micronutrients 200
3. Health Problems in Rice Core Regions 201
4. Rice Processing 202
 4.1 Drying 203
 4.2 Parboiling 205
 4.3 Rice Milling 205
5. Potential usages of Edible Co-products 212
 5.1 Rice Brokens—Case Study: Reconstituted Rice 212
 5.2 Rice Bran 213
6. Future Scenarios of Nutrient-Focused Rice Processing 216
Acknowledgements 217
References 218
11. Virus Resistance Breeding in Cool Season Food Legumes: Integrating Traditional and Molecular Approaches
Shalu Jain, Kevin McPhee, Ajay Kumar, Reyazul Rouf Mir, and Ravinder Singh

1. Cool Season Food Legumes 221
2. Methods of Detecting Plant Virus Diseases 223
 2.1 Protein-Based Detection Methods 223
 2.2 Molecular Methods in Plant Virus Detection 226
3. Source of Resistance to Viruses in CSFLs 227
 3.1 Utilization of Non-Host Resistance 227
 3.2 Screening Germplasm for Host Resistance to Develop Virus Resistant Cultivars 229
 3.3 Mode of Inheritance of Resistance 231
 4.1 Molecular Markers 233
 4.2 Genetic Linkage Maps 234
 4.3 Towards Marker-Assisted Selection (MAS) for Virus Resistance Breeding 235
 4.4 Potential of Comparative Genomics for CSFLs 237

Acknowledgements 239
References 239

Section IV
Expert Advice on Policy and Developmental Aspects

12. Talking Agricultural Sustainability Issues—an Interview with Dr. Gurdev Khush
Gurbir S. Bhullar

13. Economics and Politics of Farm Subsidies in India
S. S. Johl

 1. Consumer Subsidies 254
 2. Agricultural Subsidies 256
 3. Policy Prescriptions 260

Sant S. Virmani

 1. The Issue 263
 2. Strengths and Weaknesses of Public, Private, and NGO Sectors 264
 3. International Collaboration 265
4. Mechanism(s) for Establishing Public, Private, and NGO Partnership 265
5. Policy Support 267

15. Contract-Farming for Production and Procurement of Mint—Lessons from Personal Experience
Tarlok S. Sahota

1. Introduction 269
2. Effective Communication—Foundation for a Good Start 269
3. Start on a Low Scale and Build Confidence in the Community Before Expanding 270
4. Cluster Approach for Expansion 271
5. Overcoming our Own Inhibitions for Expansion 271
6. Expansion was Required to Conquer Opposition from Within the Company 272
7. Balancing Company’s and Farmers’ Interests 273
8. Research and Development Support for Quick Expansion 273
9. Farmers First 277
10. Meeting Quality Goals 277
11. Advisory and Extension Services 280
12. Synergy with Other Organizations 280
13. Concluding Remarks 281
Acknowledgements 281
References 282

Index 283
With an increase in the frequency of occurrence of extreme weather events such as drought, flood, tsunami, and sea level rise, there is also increased volatility in the price of major staple grains in the international market. There was a big rise in the price of rice, wheat, and other cereals in 2008, as a result of which nearly a billion additional children, women, and men went to bed hungry. In 2012 again there is increased price volatility caused partly by the drought in North America and also by the use of corn for the production of ethanol. Hence, for sustainable food security, it is important that we have sustained production of adequate quantities of food grains. This will call for an “evergreen” revolution in agriculture leading to the improvement of productivity in perpetuity without associated ecological harm.

For a long time, sustainability was measured only in economic terms. After the 1972 Stockholm conference on the human environment, environmental parameters were also added to measure sustainability. Fifty years ago Rachel Carson, in her book *Silent Spring*, drew attention to the harmful effects of excessive use of pesticides. Also the loss of biodiversity resulted in some cases in genetic homogeneity in crops, thereby increasing genetic vulnerability to pests and diseases. This was clear during the potato famine of the 1840s in Ireland.

In addition to economic and environmental sustainability, social sustainability has also become important. With increasing emphasis on research for private profit rather than for public good, there will be social exclusion in access to technology depending on the purchasing power of the small farmer. The year 2014 has been declared by the UN as “International Year of Family Farming.” The aim is to rekindle and sustain family farming around the world. In developing countries, farming is not only a way of life but a means to livelihood. Agriculture therefore will have to help in generating more income and more jobs, in addition to more food.

In the context outlined above, this book on agricultural sustainability, edited by Gurbir S. Bhullar and Navreet K. Bhullar, is a timely contribution. The book covers different aspects of sustainability in a holistic manner. It also shows how to improve the efficiency of the use of market-purchased inputs such as mineral fertilizers. Sustainable agriculture is the pathway to avoid price volatility and human suffering. I therefore hope that this book will be widely read and used by professionals and policy makers as well as farmers and farm dwellers. We owe a deep sense of gratitude to Gurbir and Navreet, as well as to the authors of the chapters, for their labor of love toward sustainable advances in agricultural productivity.

Prof. M. S. Swaminathan
Member of Parliament of India (*Rajya Sabha*)
Emeritus Chairman, M S Swaminathan Research Foundation
Provision of sufficient amounts of nutritious food for the ever-increasing
global population is probably the largest challenge facing mankind. Despite
a number of hunger eradication programs a large portion of the human
population still remains undernourished. Land degradation and changes
in land use patterns limit the area that could be brought under crop culti-
vation. Diminishing stocks of natural resources (fossil fuels and nutrients
such as phosphorus) question the continuation of current agricultural prac-
tices, which depend heavily on high-energy inputs. The ongoing environ-
mental changes are projected to seriously hamper agricultural production
by increased frequency and intensity of extreme events such as drought and
floods, more so in underprivileged parts of the world. Anthropogenic activ-
ities have not only contributed towards the climatic changes but have also
resulted in degradation of natural resources (e.g., water and air pollution) and
loss of biodiversity. Biodiversity losses—that affect a number of ecosystem
services—are not only limited to natural habitats; with intensive monoculture
farming on a large scale and use/misuse of cultivation and pest control prac-
tices, the agricultural landscape has also been deprived of a lot of diversity at
species, varietal, and microbial scales. It is also noteworthy that, with chang-
ing food habits, we are increasingly shrinking the number of species from
which we source a major portion of our food. For example, only 12 plants
and five animal species currently contribute 75% of the world’s food produc-
tion; and 60% of plant-based calories and proteins are obtained from only
three crops: namely, rice, maize, and wheat.

Agriculture being the primary anthropogenic activity for provision of
basic needs for human beings, it is no surprise that agricultural sustainability
is one of the most discussed subjects of our times. This book, *Agricultural
Sustainability: Progress and Prospects in Crop Research*, presents the views of
agricultural experts from across disciplinary and geographical boundaries. The
15 chapters—contributed by internationally recognized scientists from Europe,
North America, Australia, and Asia—have been grouped into four distinct sec-
tions, each representing a crucial thematic area. The vast array of subject areas
discussed in the book range from agrobiodiversity to biotechnology, from mar-
ginal crops to industrial approaches, from resource conservation to nutritional
enhancement of crops and crop products, and from strengthening of human
resources for agricultural research and development to economic and political
priorities for effective production, marketing, and distribution of agricultural
commodities. The authors of most of the chapters have experienced agricul-
tural research and/or development both in developed and developing worlds
and hence benefit from a wider vision in presenting a balanced view. As far as possible, the language of the chapters has been kept simple so that educated non-expert readers may enjoy reading and may benefit from the information provided herein. This book will serve as an educational tool for budding scientists, will provide a comprehensive overview for advanced researchers, and will lay guidelines for important policy decisions.

The Editors
Agricultural Sustainability
Progress and Prospects in Crop Research

By Gurbir S. Bhullar, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland and Navreet K. Bhullar, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

AVAILBLE JANUARY 2013!

ISBN: 9780124045606
Price: $79.95 / €57.95 / £48.99
Hardcover / 240 pages

Collaboratively written by a number of international experts, this work covers a vast array of topics pertaining to agricultural research (see contents below). In addition to providing an overview of scientific solutions for enhancing crop productivity and conservation of natural resources, the book also reflects on the economic policy priorities for attaining sustainability.

- Provides cutting edge scientific tools and available technologies for research
- Addresses the effects of climate change and the population explosion on food supply and offers solutions to combat them
- Written by a range of experts covering a broad range of agriculture-related disciplines

Visit store.elsevier.com to order your copy!