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a b s t r a c t

The potential for N2O emissions outside the main growing season may be influenced by long-term effects
of cropping system. This was investigated by collecting intact soil cores (100 cm3, 0e4 cm depth) under
winter wheat in three organic cropping systems and a conventional reference within a long-term crop
rotation experiment. Average annual inputs of C in crop residues and manure ranged from 1.7 to
3.3 Mg ha�1. A simulated freezeethaw cycle resulted in a flush of CO2 during the first 48 h, which could
be mainly from microbial sources. Other samples were adjusted to approximately �10, �30 or �100 hPa
and amended with excess 15NO3

� prior to freezing and thawing. Denitrification was the main source of
N2O during a 72-h incubation at 22 �C, as judged from N2O and total 15N evolution. Although the input of
C in the conventionally managed cropping system was significantly less than in the organic cropping
systems, it showed higher N2O evolution at all three matric potentials. Estimates of relative gas diffu-
sivity (DP/D0) in soil from the four cropping systems indicated that C input affected soil aeration. Soil
from the two cropping systems with highest C input showed N2O evolution at DP/D0 in excess of 0.02,
which is normally considered a threshold for development of anaerobic sites in the soil, presumably
because the oxygen demand was also high. The study shows that cropping system affects both soil gas
diffusivity and C availability, and that both characteristics significantly influence the N2O emission
potential.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Within arable agriculture, short-term N2O emissions are stim-
ulated by manure and fertilizer application (Röver et al., 1998;
Rochette et al., 2008; Chantigny et al., 2010) and residue incorpo-
ration (Aulakh et al., 1991; Petersen et al., 2011). However, a signif-
icant part of annual N2O emissions may not derive from recent
amendments, but from soil organic matter (SOM) turnover, and
occur partly outside the main growing season, for example after
rainfall or, in mid-latitude regions, in connection with freezing and
thawing cycles (Sexstone et al., 1985; Teepe et al., 2001; Matzner
and Borken, 2008). SOM status will reflect cumulated effects of
cropping system, as modified by soil type (Petersen et al., in press),
and hence management could influence N2O emissions caused by
fluctuations in soil wetness and temperature.

Freezeethaw events transiently stimulate soil respiration (Kim
et al., 2012), and this has been explained by disruption of aggre-
gates protecting SOM, or release of cell constituents from the soil
etersen).
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microbial biomass (Schimel and Clein, 1996; Christensen and
Christensen, 1991; Denef et al., 2001; Mørkved et al., 2006; Feng
et al., 2007; Kim et al., 2012). The microbial biomass C of a crop-
ping system is positively related to SOM (Anderson and Domsch,
1989), and these sources are therefore not easily distinguished.

Frequently, the flush in respiration is accompanied by biogenic
N2O emissions (Röver et al., 1998; van Bochove et al., 2000),
possibly induced by the O2 demand resulting from labile C turnover.
Matzner and Borken (2008) discussed in some detail the various
mechanisms potentially involved in promoting N2O emissions after
thawing; they concluded that the information available is in-
conclusive, and that different mechanisms may be involved
depending on site conditions. It has been argued that freezing of
soil water can impede gas exchange, resulting in accumulation of
N2O produced in unfrozen soil volumes which is then released in
connection with thawing (Teepe et al., 2001; Elberling and Brandt,
2003). However, a field study with application of 15NO3

� at two soil
depths associated N2O emissions with denitrification activity at 0e
5 cm depth (Wagner-Riddle et al., 2008).

SOM is not only a driver of respiratory activity, but also interacts
with minerals in the formation and maintenance of soil structure.
Using X-ray computed tomography, Luo et al. (2010) found
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a positive correlation between SOM and macroporosity across two
soil types, two land uses and three soil depths. Pore size distribu-
tion affects soil water holding capacity (Mäder et al., 2002) and gas
exchange (Schjønning et al., 2005) and, hence, SOM is a significant
factor in defining both O2 demand and O2 supply of a given soil. This
further implies that SOM will interact with soil moisture in deter-
mining when suboxic conditions develop to support denitrification
(Smith and Tiedje, 1979; Matzner and Borken, 2008).

Denitrification and N2O emissions associated with freezeethaw
cycles and rainfall have been related to individual management
factors, such as tillage practice, crop species, and fertilizer type
(Kim et al., 2012). However, long-term effects of management have
until now not been evaluated at the level of cropping system, as
represented by crop sequence, fertilizer strategy and residue
management. In this study, we examined the potential for gaseous
N losses from intact soil collected in three organically managed
cropping systems and a conventionally managed reference within
a long-term field experiment. Organic crop production relies
exclusively on livestock manure and green manure crops for
maintenance of soil fertility, and this generally results in higher
levels of soil organic matter (Suddick et al., 2010; Gomiero et al.,
2011). Soil cores were adjusted to different water potentials and
exposed to a freezeethaw cycle. Based on the considerations pre-
sented above we hypothesized that N2O emission potentials
outside the main growing season are influenced by long-term
effects of cropping system. Secondly, since SOM promotes aggre-
gation and macroporosity, different relationships between N2O
emission and soil moisture were expected for the four cropping
systems investigated.
2. Materials and methods

2.1. Site description

Soil samples were collected within a long-term cropping system
experiment at Flakkebjerg in Eastern Denmark (55�190N, 11�230E)
that was initiated in 1997. The soil was a sandy loam (Typic
Hapludult) with 780 g kg�1 sand and 155 g kg�1 clay, and with a pH
(CaCl2) of 7.4 (Chirinda et al., 2010). The experiment involved four
(out of eight) cropping systems under organic (O) or conventional
(C) management laid out in two randomized blocks, in which all
four crops in the rotations were represented each year. The main
crop sequences (Table 1) were identical except that O2þCC had one
Table 1
Intact soil was sampled from the four cropping systems described below. The
systems were under organic (O) or conventional (C) management, andwith (þCC) or
without (�CC) winter cover crops. The rotation O2 had grass-clover instead of faba
bean in the 2nd year. For additional information about the experimental design, see
Olesen et al. (2000) and Askegaard et al. (2011).

Cropping system O2 þCC O4 þCC O4 �CC C4 �CC

Crop 1 Spring
barley:ley

Spring
barleyCC

Spring
barley

Spring
barley

Crop 2 Grass-clover Faba beanCC Faba bean Faba bean
Crop 3 Potato Potato Potato Potato
Crop 4 Winter

wheatCC
Winter
wheatCC

Winter
wheat

Winter
wheat

Soil organic
C (g kg�1)b

9.9 ba 9.2 b 9.5 b 7.8 a

C input
(Mg ha�1 yr�1)c

3.27 c 3.25 c 2.40 b 1.66 a

a Values within a row followed by different letters are significantly different at the
95% confidence level.

b Soil organic C at 0e25 cm depth was determined in 2008; data from Chirinda
et al. (2010).

c The annual C input in manure and above-ground residues were estimated as
average for the period 1997e2006.
year of grass-clover for fertility building. The rotation C4 �CC was
managed conventionally, i.e. withmineral fertilizers and pesticides.
For details on field management, see Askegaard et al. (2011). Soil
organic C, as well as average annual inputs of C during the period
1997e2007, are shown in Table 1.

2.2. Soil sampling

Soil sampling took place in winter wheat of each cropping
system on 29 March 2007. The individual field plot was 13 m long
and consisted of five 2.6-m strips, two of which were reserved for
harvest, while the other three strips each contained seven pre-
defined subplots. For the present experiment, three subplots per
field plot were randomly selected in advance of soil sampling; only
the two outer rows of subplots were considered in order to mini-
mize disturbances during sampling. Fig. 1 summarizes the experi-
mental design and sampling scheme.

The winter of 2006e07 was unusually warm, and there was no
snow on the ground at time of sampling. Due to the warm winter,
plants had developed about five tillers at the time of sampling. In
C4 �CC, a topdressing of pelletized NS mineral fertilizer with
12 kg ha�1 NH4

þeN and 12 kg ha�1 NO3
�eN had been applied two

days prior to soil sampling, but was still visible as pellets at the soil
surface, probably because there had been no rainfall during the 48-
h period between the time of application and sampling (based on
hourly registrations from a nearby climate station). No manure had
been applied recently prior to sampling. Four intact soil cores
(100 cm3) were sampled from 0 to 4 cm depth between crop rows
in each of the three pre-selected subplots within each field plot
(n ¼ 24 per system). Six additional samples were collected 1e2 m
from the boundary of one of the C4 �CC field plots for a pre-trial
to evaluate CO2 evolution as an index of C turnover following
freezing and thawing of this soil. Soil samples were transported to
the laboratory in a cooler and stored at 2 �C.

2.3. Laboratory incubations

The six soil cores collected for the pre-trial were subjected to
freezing at �10 �C for 16 h and then, while still frozen, transferred
to 1-L glass containers equipped with a septum for gas sampling
and placed either in an incubator at 10 �C (n ¼ 3) or at room
temperature at approx. 22 �C (n¼ 3). Each container was connected
to a gas chromatograph via a six-port multi-position valve
(Cheminert Model C25Z; VICI Valco Instr., Schenkon, Switzerland).
Headspace CO2 concentration was analysed every hour in one of
the six glass containers, i.e., each sample was analysed every six
hours; monitoring was continued until CO2 evolution rates were
constant, after approximately 100 h.

One intact soil sample from each subplot was used for deter-
mination of soil NO3

�. The other three samples were randomly
assigned to batches that were adjusted to one of three matric
potentials (jm) as previously described (Petersen et al., 2008);
these potentials were selected using a water retention curve
previously determined for the same field site, albeit for soil at 6e
10 cm depth (Schjønning et al., 2007), so that subsequently 2 mL
K15NO3 (50 atom% excess, final concentration 10 mg NO3eN kg�1

soil) could be added drop-wise to the soil surface, bringing final jm

to approx. �10, �30 or �100 hPa. With excess NO3
�, any treatment

effects on N2O and N2 evolution were assumed to reflect C avail-
ability and O2 supply, as modified by cropping system and soil
water content.

Nitrate-amended samples were frozen overnight and then
transferred to 1-L glass containers as described above. The head-
space atmosphere was replaced by a He:O2 mixture to increase
sensitivity of 15N gas analyses, but adding 5 mL L�1 N2 to ensure



Fig. 2. Carbon dioxide evolution from intact, field moist soil cores (100 cm3), collected
at 0e4 cm depth in a winter wheat field in early spring, after freezing at �10 �C
overnight, followed by incubation at 10 �C or room temperature (approximately 22 �C).

Fig. 1. A schematic overview of the winter wheat plots where intact soil cores were sampled for the laboratory experiment. Sampling took place in three randomly selected
miniplots (hatched areas). The four cropping systems, i.e., O2 þCC, O4 þCC, O4 �CC and C4 �CC, are described in Table 1.
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a pool of nitrogen for mass spectrometric analysis. Initial concen-
trations of N2 and O2 were 4.7 � 0.9 and 17.0 � 0.7% (mean � SD,
n ¼ 38), respectively. The soil cores were incubated at room
temperature (22 �C) for 72 h. By the end of incubation, gas samples
were taken for analysis of N2O and 15N gas accumulated during
incubation.

2.4. Analytical methods

Soil mineral N was extracted in 1 N KCl and filtered extracts
analysed colorimetrically (Keeney and Nelson, 1982). Headspace
concentrations of N2, CO2 and O2 were determined with a dual-
channel Agilent 3000 micro GC configured as described by
Petersen et al. (2009). Nitrous oxide was analysed on a Chrompack
9001 GC (Chrompack; Middelburg, Netherlands) with settings as
described by Petersen et al. (2008). Gas samples were analysed for
15N abundance as previously described (Carter and Ambus, 2006)
using an elemental analyser (EA 1110, Carlo Erba, Milano, Italy)
coupled in continuous flow mode to an isotope-ratio mass spec-
trometer (IRMS; Finnigan MAT Delta, Bremen, Germany). Total
N2O þ N2 derived from K15NO3 was calculated fromm/z 28, 29 and
30 assuming 50% 15N enrichment of the substrate pool.

2.5. Data analysis

The effect of temperature on CO2 evolution rates was calculated
from the Arrhenius relationship:

lnðk2=k1Þ ¼ EA=Rð1=T1 � 1=T2Þ; (1)

where k1 and k2 are CO2 evolution rates (mg Cm�2 d�1) at the lower
(T1, K) and higher temperature (T2, K), respectively, EA is the
apparent activation energy (J mol�1), and R is the universal gas
constant (8.314 J mol�1 K�1). Rates of CO2 evolution were derived
from cumulated CO2. For each time interval, EAwas calculated from
CO2 evolution rates at 10 and 22 �C using Equation (1), and then
Q10 (¼k2/k1) was then calculated for the 10e20 �C temperature
range.
Soil gas diffusivity (DP) relative to air (D0), i.e., Dp/D0, was
calculated for individual samples with the empirical model of
Moldrup et al. (2005), using soil porosity and air-filled pore space at
the respective water contents and at �100 hPa matric potential
(jm). Effects of cropping system, jm, and cropping system � jm on
N gas evolution and DP/D0 were determined with a mixed model
using SAS 9.2 (SAS Institute Inc., Cary, NC, USA). The relationship
between DP/D0 and N2O evolution across all treatments was further
described by an exponential relationship, i.e., N2O ¼ a(Dp/D0)b,
where a and b are empirical fitting parameters.

3. Results

Following overnight freezing at �10 �C and subsequent incu-
bation at 10 or 22 �C, CO2 evolution was monitored to describe the
turnover of labile C from undisturbed 100-cm3 soil samples (Fig. 2).
CO2 evolution and Q10 values were calculated for each 24-h period
(Table 2). At both temperatures the last two 24-h periods had very
similar CO2 evolution rates, indicating that the flush of CO2 had
largely ceased within 48 h. Cumulated CO2 evolution during 96 h
was significantly (P < 0.001) higher at 22 �C. Apparent activation



Table 2
CO2 evolution from undisturbed soil (0e4 cm depth) following overnight freezing
and incubation at two temperatures. An Arrhenius relationship was used to derive
apparently activation energy (EA) and Q10 for each 24-h period and the full period.
Data shown are mean � SE (n ¼ 3).

Period CO2 (mg C m�2 d�1) EA (kJ mol�1) Q10

10 �C 22 �C

0e24 h 192 (23) 473 (75) 51.9 (3.1) 2.13 (0.10)
24e48 h 132 (15) 344 (56) 55.1 (4.2) 2.24 (0.14)
48e72 h 105 (12) 271 (47) 54.5 (1.8) 2.21 (0.06)
72e96 h 98 (11) 257 (49) 55.5 (2.4) 2.24 (0.08)
0e96 h 528 (59) 1344 (215) 54.3 (1.4) 2.20 (0.05)
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energies were nearly identical in all 24-h period, averaging
54.3 kJ mol�1. Similarly, Q10 values were within a narrow range of
2.13e2.24 during and after the post-freezing flush of CO2.

In the three organic cropping systems, in situ concentrations of
NO3

� under winter wheat were low (<1 mg N kg�1), whereas in
samples from C4 �CC there was between 14 and 193 mg NO3

�e
N kg�1 (theoretical value: 30 mg NO3

�eN kg�1) as a result of the
dissolution of fertilizer pellets during extraction. Fertilizer-derived
NO3

� was probably lost via leaching or denitrification during
adjustment of matric potentials, but any fertilizer-derived NO3

�

remaining would have diluted the 15NO3
� introduced.

The accumulation of N2O (Fig. 3A) ranged from<0.5 to 5mgN2Oe
Nkg�1 and increasedwithjm (P< 0.001). Trends for higher emissions
A

B

C

Fig. 3. The figure shows (A) N2O emissions, (B) total gaseous N loss (N2 þ N2O) derived
from K15NO3, and (C) relative gas diffusivity (DP/D0) of intact soil cores from four
cropping systems (cf. Table 1). The soil cores were collected at 0e4 cm depth under
winter wheat, adjusted to one of three matric potentials, amended with K15NO3, and
then exposed to overnight freezing at �10 �C, followed by incubation at room
temperature for 72 h. Relative gas diffusivity was calculated from specific bulk density
and soil water content of each sample using an empirical model (see text). The results
represent mean � SE (n ¼ 3).
from C4 �CC compared to O4 þCC and O2 þCC were not significant
(0.05 < P < 0.1). The evolution of total N gases (N2 þ N2O) was
calculated assuming that K15NO3was the only source. Total gaseousN,
likeN2O, showed a significant effect ofjm (P< 0.001), but no effects of
cropping system (Fig. 3B). Relative gas diffusivities are shown in
Fig. 3C. Effects of cropping systemandjm, but not their interaction, on
DP/D0 were significant (P < 0.01). The �10 and �30 hPa matric
potentials both differed significantly (P < 0.05) from �100 hPa with
respect to DP/D0. In a pair-wise comparison of cropping systems,
O2 þCC and O4 þCC were similar, and differed significantly from
C4 �CC and O4�CC (P � 0.01).

The relationship between DP/D0 and N2O evolution was described
by an exponential model, N2O ¼ a(Dp/D0)b; the results are shown as
double-logarithmic plots in Fig. 4, where b then corresponds to the
slope for each system. The stimulation ofN2Oemissionswith declining
DP/D0 for O4�CC and O4þCC appears to be less than for O2þCC and
C4 �CC, but slopes were not significantly different. In contrast, the
intercepts of the regression lines with the x-axis, corresponding to
N2O¼ 1mgN kg�1 in the logelog plot, differed significantly (P< 0.01)
between cropping systemswith andwithoutwinter cover crops in the
rotation, i.e., C4 �CC ¼ O4 �CC < O4 þCC ¼ O2 þCC. Hence, the two
systems with cover crops had, for a given DP/D0, significantly higher
rates of N2O emission than those without cover crops.
4. Discussion

Organic farming systems are highly diverse, and there can be
large differences in the amounts and quality of organic matter
inputs which may, in turn, impact soil N transformations via effects
on, e.g., water holding capacity and soil microbial biomass and
activity (Mäder et al., 2002; Gomiero et al., 2011; Petersen et al.,
in press). Here, we used a long-term crop rotation experiment
with three organic cropping systems and a reference under
conventional management to evaluate the potential for N2O
emissions outside the growing season. Intact soil cores were
exposed to a freezeethaw cycle, a disturbance that will generally
stimulate soil respiration and denitrification activity in arable soil
(Matzner and Borken, 2008). In comparison with natural ecosys-
tems, such as forests, arable soils tend to show greater N2O emis-
sions after freezeethaw cycles, most likely due to a lower C-to-N
ratio of fertilized soil (Matzner and Borken, 2008).

Sampling took place in winter wheat, which was represented in
all four cropping systems, at a time where the soil had not been
disturbed for several months. The experimental treatments were
realistic in that soil was sampled from shallow depth (0e4 cm)
where diurnal temperature fluctuations are greatest, and at
Fig. 4. The relationships between relative gas diffusivity, DP/D0, and N2O evolution
rates are presented in a double-logarithmic plot. The slopes of the four cropping
systems were not different, whereas the x-axis intercepts of systems with cover crops
were significantly higher than those of systems without cover crops. The results
represent mean � SE (n ¼ 3).
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a time of year where temperature fluctuations may be high (Henry,
2007). However, the temperature shift, from �10 �C to 22 �C, was
deliberately large to induce measurable effects. For reference,
temperature changes from �5 �C or below to 5 �C or above within
24 h occurred just four times between 1988 and 2011, and shifts
from �4 to 4 �C around 20 times (based on data from a climate
station at the experimental site).
4.1. Flush of CO2 after freezeethaw cycle

In the preliminary freezeethaw test to evaluate the time course
of labile C (and N) turnover, the flush of CO2 occurred within the
first 48 h (Table 2). However, CO2 evolution remained higher at
22 �C compared to 10 �C, suggesting that this represented basal
respiration The post-freezing flush has been explained by i) break-
up of soil aggregates exposing previously protected SOM (van
Bochove et al., 2000); ii) microbial decay (Herrmann and Witter,
2002); or iii) a release of substrates from the microbial biomass
such as osmolytes from organisms living in unfrozen water films
(Panikov et al., 2006). Average EA (54.3 � 1.4 kJ mol�1) and Q10
(2.20 � 0.05) were consistent with previous studies on the effect of
temperature on soil respiration (Kätterer et al., 1998), and
remarkably constant in all four 24-h periods, suggesting a common
origin of CO2. Herrmann and Witter (2002) linked 65% of the flush
in CO2 after a freezeethaw cycle to microbial sources. Schimel and
Clein (1996) exposed boreal soils to repeated freezing and thawing
and concluded that C and N released after the first cycle, but not
after subsequent cycles, was mainly of microbial origin. In the
present experiment, some microbial decay may have occurred due
to freezing, but a microbial source of CO2 could also be adaptation
to the post-freezing incubation temperature. This has been shown
to include an increase in metabolic quotient and alterations in cell
membrane composition (Petersen and Klug, 1994; Feng and
Simpson, 2009). As temperature fluctuations are dampened with
soil depth, it implies that O2 consumption due to microbial adap-
tation is largest near the soil surface. This would be in accordance
with the observations of Wagner-Riddle et al. (2008) that denitri-
fication at 0e5 cm depth was the main source of N2O during spring
thaw.
4.2. N2O and 15N evolution

The time course of CO2 evolution was taken to indicate the
phase where also soil N transformations, including N2O emission,
were stimulated. The time frame of 48e72 h agrees with the results
of Tenuta and Sparling (2011). A recent literature review calculated,
for six laboratory studies with simulated freezing and thawing,
a wider range of 2e11 d during which N2O emissions were
stimulated (Kim et al., 2012), but also pointing to availability of
labile C as the main driver. Availability of electron acceptor was
non-limiting in this incubation study due to addition of excess NO3

�,
but in general denitrification activity in arable soil is controlled by
the maintenance of anaerobic microsites via decomposer activity,
rather than by NO3

� availability (Myrold and Tiedje, 1985).
For the three organically managed rotations, the total gaseous

15N losses were comparable to the amounts of N2O evolved, sug-
gesting that denitrification based on K15NO3 was themain source of
N2O, and that N2Owas themain product of denitrification. Previous
reports have also concluded that denitrification is the main source
of N2O during thawing (Müller et al., 2002; Phillips, 2008; Wagner-
Riddle et al., 2008). The predominance of N2O in the present study
may have been biased by the addition of excess NO3

�, since a high
availability of NO3

� relative to metabolizable C will shift the N2O:N2
ratio towards N2O (Tiedje, 1988). Tenuta and Sparling (2011) found
that N2O:N2 ratios of gas emitted after a freezeethaw cycle changed
dynamically and never exceeded 2.45, corresponding to 70% N2O.

In samples from the conventional rotation (C4 �CC), N2O
evolution exceeded total 15N gas loss, indicating that K15NO3 was
not the only source of gaseous N (Fig. 3). N2O could have been
produced via nitrification of fertilizer-derived, unlabelled NH4

þ

(Wrage et al., 2004), but significant nitrifier activity during early
spring is not likely (Smith et al., 2010). Alternatively, fertilizer-
derived NO3

� could have diluted the 15NO3
� pool, violating the

assumption that K15NO3 was the only significant source of 15N
gases. The magnitude of this error is difficult to assess, because the
equilibration between fertilizer-derived NO3

� and 15NO3
� could have

been incomplete due to diffusion limitations (Laegdsmand et al.,
2012), but most likely the amounts of N2O observed with soil
from all four cropping systems represented total denitrification
activity under the experimental conditions used.

4.3. Relative gas diffusivity

The exponential relationships between DP/D0 and N2O emis-
sions confirmed the importance of gas diffusivity as a driver for
denitrification. However, within each matric potential N2O emis-
sions from the four cropping systemswere comparable despite very
different gas diffusivities, which highlights the involvement of
labile C. N2O emissions from soil cores of O2 þCC and O4 þCC
occurred mainly at DP/D0 values above 0.02, although this is nor-
mally considered to be a threshold for development of anaerobiosis
(Stepniewski,1981). Average annual inputs of crop residues in these
two cropping systems were significantly higher than in the two
cropping systems without cover crops (Table 1), and release of
labile C during and after the freezeethaw cycle could thus have
induced an O2 demand that lead to suboxic conditions and deni-
trification activity, even at relatively high air-filled porosity and
hence gas diffusivity.

In this study, DP/D0 was used as an index of soil aeration. Water-
filled pore space (WFPS) is another widely used proxy for soil
aeration (Linn and Doran, 1984; Smith et al., 2003). There was
a quadratic relationship (r2 ¼ 0.963) between DP/D0 and WFPS, and
both indices of soil aeration would probably lead to the same
conclusions regarding the regulation of N2O emissions with this
data set. However, gas and solute diffusivity have been found to be
better descriptors of, respectively, CO2 evolution and net nitrifica-
tion activity compared to soil water- and air-filled porosity across
soil types (Schjønning et al., 2003). Further, a laboratory study with
intact soil cores (Petersen et al., 2008) found a better explanation of
N2O emissions across sevenmatric potentials and two depths when
using DP/D0 rather than WFPS to explain the effect of soil moisture.

As mentioned above, a water retention curve for soil collected at
6e10 cm depth was used as reference for adjustment of matric
potentials, which introduces a potential error with respect to the
true jm levels used in this experiment. For a similar soil type under
conventional tillage that was also sampled in winter wheat during
early spring, air-filled porosities and DP/D0 at 0e4 and 14e18 cm
depth were nearly identical in the range of matric potentials
investigated here (Schjønning et al., 2011), which indicates that
under these soil conditions there will be little difference in soil
properties within the plough layer. Despite this uncertainty, the
results clearly indicate the importance of soil water regime for soil
aeration.

4.4. Conclusion

In conclusion, a freezeethaw event, representing off-season
fluctuations in climatic conditions, influenced potential N2O
emissions in a complex way. Denitrification was probably the main



S.O. Petersen et al. / Soil Biology & Biochemistry 57 (2013) 706e712 711
source of N2O. There were indeed consistent long-term effects of
cropping system on “background” N2O emissions, as hypothesized,
but higher organic inputs via crop residues and manure in cropping
systems O2 þCC and O4 þCC with cover crops did not result in
higher N2O emission potentials; highest rates tended to be in
C4 �CC having the least SOM concentration and average annual
input of C. Presumably the stimulation of N2O production by C
availability (O2 demand) in the systems with cover crops was
counter-balanced by improved soil aeration (O2 supply), as evi-
denced by N2O emissions occurring at comparatively high relative
gas diffusivities.
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