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This study examined the effects on nutrient utilization and fish performance when replacing 16, 31, and 47%
of fish meal protein (corresponding to replacing 15, 29 and 44%, respectively, of total dietary protein) with a
fixed matrix of organic pea, horsebean and rapeseed plant protein concentrates (PPC) in a ratio of
1.07:1.00:0.66. Four iso-energetic and iso-nitrogenous diets were produced to include 0, 136, 274 or
410 g kg−1 of the organic PPC matrix, respectively. The organic protein ingredients were chosen based on
their high protein content, and the matrix was established to mirror the amino acid composition of fish
meal. The plant ingredients were dried, dehulled, grinded and air classified in accordance with the European
Union Commission Regulation on organic aquaculture production, increasing the protein concentrations up
to 577 g kg−1 dry matter. Two experiments were carried out using juvenile rainbow trout (Oncorhynchus
mykiss): 1) a digestibility study to examine the apparent digestibility of protein, lipid, nitrogen-free extract
(NFE), total phosphorus and phytate-phosphorus, followed by a water sampling period to determine the out-
put of nitrogen and phosphorus and enabling the setup of nitrogen and phosphorus mass-balances; and 2) a
57 day growth study including 3 growth periods each of 19 days and using pit-tagged fish. Substituting fish
meal with organic PPC significantly increased the apparent digestibility coefficient (ADC) of protein and lipid
(Pb0.008) at the highest PPC inclusion level, while there was a significant (Pb0.044) decrease in the ADC of
NFE with increasing PPC inclusion level. The apparent digestibility coefficient of phytate-phosphorus was sig-
nificantly lower (Pb0.005) at the highest PPC inclusion level compared to the fish meal control diet. The
mass-balances revealed a significant increase in the excretion of ammonium-nitrogen (NH4N, Pb0.017) at
the two highest PPC inclusion levels and a decrease in phosphorus (Pb0.009) excretion at the highest organic
PPC inclusion level. There was no overall effect on the specific growth rates (SGRs) or feed conversion ratios
(FCRs). The study thus demonstrated that it is possible to replace fish meal by 47% organic PPC without
compromising rainbow trout performance. However, the results also indicated that it will be difficult to re-
place much more than this as long as supplementation with synthetic amino acids and exogenous phytase
is not allowed in organic feed.
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1. Introduction

The principles of organic aquaculture encourage the development
of fish feeds containing fish meal from sustainable fisheries only to
avoid depleting global fish stocks (EU, 2007, 2009). In combination
with an increasing demand for organic trout (Bergleiter et al.,
2009), this stresses the need for alternative, organic feed ingredients.

Only a couple of previous studies have examined the effects of repla-
cing fish meal with organic protein ingredients on fish performance,
and none of the studies have looked at rainbow trout. Lunger et al.
(2006, 2007) found that up to 40% fish meal protein may be replaced
by organically certifiable protein sources in feed for juvenile cobia
(Rachycentron canadum) without negatively affecting performance.

In contrast to organic feed, much of the current research in con-
ventional (i.e. non-organic) feed for salmonids examines the substitu-
tion of fish meal by vegetable proteins (e.g., Gatlin et al., 2007;
Glencross et al., 2010; Øverland et al., 2009), and studies have
shown that it is possible to substitute a significant part of fish meal
with plant protein concentrates without compromising fish growth
when supplementing the diet with indispensable amino acids (e.g.,
Kaushik et al., 1995; Rodehutscord et al., 1995). Such results cannot
be directly applied to organic aquaculture where the organic code of
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practice implies certain limits to the feed (reviewed by Mente et al.,
2011). Following the European Union's regulation No. 834/2007 on
organic production and labeling of organic products (EU, 2007), it is
not allowed to add synthetic amino acids to the feed or to use chem-
ically solvent related purification methods of the plant ingredients. It
is therefore necessary, when formulating an organic diet, to blend a
selection of different vegetable protein sources with high protein con-
tents and complementary amino acid profiles, since optimization of
the amino acid profile of organic feed must be based on the protein
sources alone. An optimized amino acid profile can only be obtained
by combining a number of plant protein ingredients as no single agri-
cultural crop can provide a suitable amino acid composition (Gaylord
et al., 2010; Kaushik, 1990).

Proteins in high quality fish meal are palatable, highly digestible
(~90%) and anti-nutritional factors (ANFs) are more or less non-
existing (Gatlin et al., 2007; Gaylord et al., 2010). Substituting fish
meal with organic plant ingredients thus faces further challenges, as
plant-based ingredients often contain a variety of indigestible carbo-
hydrates some of which may also have anti-nutrient effects, along
with a number of non-carbohydrate anti-nutrients (Francis et al.,
2001; Jezierny et al., 2010; Krogdahl et al., 2010). The latter includes
phytate (myo-inositol hexaphosphate), which is the main phospho-
rus storage form in plants (Cheryan, 1980; Ravindran et al., 1994).
Phytate-phosphorus is highly unavailable to carnivorous fish, which
lack the enzyme phytase needed for catalyzing the hydrolysis of phy-
tate and rendering the phosphorus available for uptake (Ellestad et
al., 2002; Pallauf and Rimbach, 1997; Sajjadi and Carter, 2004). As
processing any feed materials with the aid of chemically synthesized
solvents or supplementation with exogenous phytase is not allowed
in feed for organic trout, the availability of dietary phosphorus may
become a limiting factor for organic fish.

Another consequence of the restrictions against chemically syn-
thesized solvents is that it is difficult to reduce the content of indi-
gestible carbohydrates in organic plant feed ingredients, which have
been shown to reduce the nutritional value of conventional feed in
many fish species (e.g., Glencross, 2009; Krogdahl et al., 2010; Refstie
et al., 1999).

The objective of the present study was to examine the effects on
nutrient utilization and fish performance when gradually substituting
fish meal by a matrix of organic pea (Pisum sativum) protein concen-
trate (PC), organic horsebean (Vicia faba) protein concentrate (HC),
and organic rapeseed (Brassica napus) protein concentrate (RS). The
three plant protein sources were chosen based on their, for plant pro-
tein ingredients, relatively high protein content, and the matrix was
established to mirror the amino acid composition of high quality
fish meal.

2. Materials and methods

2.1. Protein sources and diet composition

Danish produced organic pea beans, organic horse beans and organic
rapeseed were obtained from Toft Foods A/S, DLF-TRIFOLIUM A/S
and Lehnsgaard Aakirkeby respectively, while a high quality, low
temperature (LT) fish meal was obtained from FF Skagen, Denmark.
The plant protein sourceswere dried, dehulled, grinded, and air classified
at the Centre of Process Innovation, Technological Institute, Denmark,
to reduce the content of anti-nutrients and obtain crude protein concen-
trations of 512, 518 and 331 g kg−1 in the pea, horse bean, and rapeseed
meal, respectively.

Four iso-energetic and iso-nitrogenous experimental diets (A, B, C, D)
were formulated by BioMar Ltd based on proximate analyses of the four
protein feed ingredients (Table 1). Diet A served as a control diet contain-
ing fish meal as the primary protein source (i.e., fish meal constituting
94% of total dietary protein), while 16, 31 and 47% of the fish meal pro-
tein in diet A (corresponding to 15, 29 and 44%, respectively, of total
dietary protein) were replaced by an organic protein matrix consisting
of PC, HB and RS in the ratio 1.07:1.00:0.66 (Table 1) in diet B, C, and
D, respectively. The maximum inclusion level of the plant protein con-
centrate (PPC) matrix (i.e., 44% of total dietary protein) was determined
by the protein content and amino acid composition of the PPC matrix.
Wheat was used as filler to balance the diets.

The diets were produced by the Danish Technological Institute
using a twin-screw Werner & Pfleider 37 extruder and fabricated as
3.0 mm pellets. They were stored at 2 °C throughout the study.

The crude protein and lipid content of the four experimental diets
was quite similar, ranging between 44.2–46.0% for protein and 29.0–
30.8% for lipid (Table 1). The total phosphorus (TP) content of the
four diets was also very similar (1.43–1.47%), while the phytate-P
content increased with increasing plant protein supplementation
that is, increasing from 8.5% of TP in diet A to 21.5% of TP in diet D.
High TP levels in the PPC diets were due to unexpectedly high levels
of TP in the analyzed PPC batches deviating from common literature
values.

There was generally little variation between the four diets in the
content of essential amino acids except for methionine and threonine
whose content decreased with increasing PPC inclusion (Table 1).

2.2. Experimental design and procedures

Two experiments were carried out: 1) A digestibility trial followed
by a water sampling period to determine the apparent digestibility
coefficients (ADCs) of dietary nutrients as well as the composition
and magnitude of dissolved nitrogen (N) and phosphorus (P) waste
produced, which enabled the construction of complete N and P bud-
gets; and 2) a growth study to determine the specific growth rates
(SGRs) and feed conversion ratios (FCRs) of the four diets. The exper-
iments were carried out at the North Sea Research Centre, Denmark,
using juvenile rainbow trout (Oncorhynchus mykiss) obtained from
Binderup Fish Farm, Denmark.

2.2.1. Digestibility and mass-balance study (experiment 1)
This experiment lasted 24 feeding days and was designed as a fully

random, single factorial experiment with three replicate tanks for
each of the four experimental diets (i.e., n=3 experimental units
per diet, 12 tanks in all). Fish with an initial mean weight of 67.0±
7.3 g were randomly distributed at a stocking density of 19 fish tank−1

among twelve, 189 L, cylindrical–conical, flow-through, thermoplastic
tanks in a modified Guelph setup as previously described (Dalsgaard
and Pedersen, 2011). All fecal particles were collected in separated
sedimentation columns submerged in ice-water to prevent biological
breakdown between samplings. The tanks were supplied with 10 °C
tapwater at a flow rate of 40 L h−1. A 15 h light:9 h dark diurnal photo-
period was maintained throughout the trial, and oxygen saturation
levels were kept between 70 and 100% at all times. The fish were accli-
matized to the experimental conditions and to the diets for 7 days prior
to the commencement of the experiment. They were individually
weighed at the start of the experiment (day 0), and a pooled sample
of 9 fishwas collected from each dietary treatment group serving as ini-
tial carcass samples, while all remaining fish in each tank were sacri-
ficed by the end of the experiment, serving as final carcass samples.

The fish were fed 1.5% of their biomass d−1 for 12 days (calculated
based on an expected FCR). The daily ration was divided into two
equal portions which were fed at 10:00 and 14:00 h, respectively.
Feed waste was registered and counted throughout the trial. All
feces from the sedimentation columns were collected daily prior to
feeding at 10:00 h, and samples from each three consecutive days
were pooled (i.e., yielding four fecal sampling periods) and stored
at −20 °C until chemical analysis was carried out. Feces from the
first sampling period served as back-up samples, while feces from
the second and third sampling periods were analyzed for protein,



Table 1
Ingredient (%) and analyzed nutrient composition (%, mean±S.D., n=2) of the experimental diets.

Dieta A B C D

Ingredients (%)
Fish mealb 58.9 51.0 43.1 35.2
Wheatc 20.2 14.1 8.0 2.0
Organic pea protein concentrated 0.0 5.3 10.7 16.0
Organic horse bean protein concentratee 0.0 5.0 10.0 15.0
Organic rapeseed protein concentratef 0.0 3.3 6.7 10.0
Fish oilb 22.3 22.4 22.5 22.6
Vitamins and mineralsg 0.8 0.8 0.8 0.8

Proximate composition (%)h

Dry matter 96.6±0.0 95.9±0.0 97.9±0.0 97.8±0.0
Crude protein 44.2±0.1 44.6±0.2 45.4±0.4 46.0±0.0
Crude lipid 30.8±0.2 29.0±0.6 30.5±0.0 29.9±0.0
NFE (incl. crude fiber) 12.9±0.1 13.7±0.4 13.6±0.3 13.7±0.0
Ash 8.8±0.0 8.6±0.0 8.4±0.1 8.2±0.0
Total P 1.47±0.0 1.45±0.0 1.46±0.0 1.43±0.0
Phytate-P 0.13 0.18 0.25 0.31
Tryptophan (0.47) 0.48 (0.48) 0.48 (0.49) 0.47 (0.49) 0.45
Isoleucine (1.80) 1.70 (1.81) 1.69 (1.82) 1.77 (1.83) 1.76
Leucine (3.37) 3.31 (3.34) 3.29 (3.32) 3.38 (3.30) 3.25
Histidine (0.86) 0.95 (0.91) 0.99 (0.93) 1.04 (0.95) 1.04
Lysine (3.39) 3.25 (3.31) 3.24 (3.23) 3.30 (3.15) 3.19
Methionine (1.17) 1.20 (1.07) 1.09 (0.97) 1.01 (0.95) 0.90
Phenylalanine (1.71) 1.71 (1.74) 1.74 (1.77) 1.83 (1.80) 1.82
Threonine (1.73) 1.92 (1.71) 1.86 (1.70) 1.88 (1.68) 1.78
Valine (2.24) 2.16 (2.22) 2.11 (2.20) 2.16 (2.18) 2.11
Arginine (2.42) 2.89 (2.55) 2.97 (2.68) 3.18 (2.81) 3.17

a Abbreviations: A=fish meal (FM) control, B=16% FM protein replaced by plant protein matrix, C=31% FM replaced by plant protein matrix, D=47% FM replaced by plant
protein matrix.

b Fish oil and low temperature (LT) supreme fish meal (70% crude protein, 11% crude lipid, 11% ash, 92% dry matter) derived from sprat (Sprattus sprattus), FF, Skagen, Denmark.
c BioMar, Brande, Denmark.
d Organic peas (Pisum sativum), Toft Food A/S, Denmark: 51.2% crude protein, 3.0% crude lipid, 28.8% NFE, 7.1% ash, 1.1% total phosphorus, 90.1% dry matter.
e Organic horse beans (Vicia faba), DLF-Trifolium A/S, Denmark: 51.8% crude protein, 2.4% crude lipid, 29.0% NFE, 6.6% ash, 1.0% total phosphorus, 89.8% dry matter.
f Organic rapeseeds (Brassica napus), Lehnsgaard, Aakirkeby, Denmark: 33.1% crude protein, 14.8% crude lipid, 35.7% NFE, 7.3% ash, 1.6% total phosphorus, 90.9% dry matter.
g The following was supplied (mg kg−1 except as noted): vitamin A 3750 IU; cholocalciferol 750 IU; α-tocopherol, 131.3; thiamine, 7.5; riboflavin, 15; pyridoxine, 7.5; vitamin

B12, 0.002; vitamin K3, 7.5; zinc, 75; iodine, 0.9; copper, 3.75; manganese, 22.5; cobalt, 0.75; selenium, 0.19.
h Amino acid values in parenthesis were calculated using the feed formulation software Allix from A-systems SA (Versailles, France).
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lipid, dry matter (DM), ash and total phosphorus. Feces from the
fourth sampling period were analyzed for phytate-P.

The fish were individually weighed at the end of the digestibility
trial (day 13), and returned to the tanks where they were fed a
fixed daily ration for 12 days corresponding to 1.5% of the biomass
measured at the end of the digestibility trial. This was done to ensure
that the dissolved waste produced (N and P) was generated from a
well defined and constant amount of feed. After the first 5 days of
this period, influent water was turned off for 24 h (and air diffusion
turned on) and the waste produced was measured as the delta in-
crease derived from water samples collected just prior to feeding at
10:00 and 24 h later, respectively. The procedure was repeated after
72 h (i.e., 3 days) to obtain replicate measures for each tank.

2.2.2. Growth study (experiment 2)
The second experiment included 57 feeding days and was

designed as a fully random, single factorial experiment with two rep-
licate tanks for each experimental diet (i.e., n=2 experimental units
per diet, 8 tanks in all). It was carried out in a recirculation freshwater
system consisting of 1.18 m×1.18 m fiber glass tanks with an average
water depth of 0.55 m, a mechanical filter (Hydrotech), a submerged
biofilter, and a trickling filter (both BioBlok 150–200, EXPO-NET,
Hjørring, Denmark). A 14 h light:10 h dark regime was maintained
throughout the experiment.

Juvenile fish were randomly distributed among eight tanks and
tagged individually by injecting a unique passive integrated transponder
(Pit tag, Jojo Automasjon A/S, Stavanger, Norway) into the right side
muscle below the dorsal fin after anesthetizing the fish with tricaine
methanesulfonate (MS 222). The fish were acclimatized to the system
and experimental diets for 7 days. The density in each tankwas adjusted
to 8 kg m−3 at the start of the experiment, and the fish with an initial
mean weight of 65.7±13.3 g were subsequently fed 1.3% of their bio-
mass d−1 (calculated based on an expected FCR) for 57 days. The feed-
ing period was divided into 3 growth periods of 19 days, each followed
by weighing of all individuals and adjusting of the ration. Daily feed
waste was collected using swivel unit separators mounted to the tanks
and counted throughout the experiment. Dissolved oxygen levels were
kept above 70% saturation (N7.4 mg L−1) at all times during the exper-
iment, and the water temperature was maintained at 15.9±0.3 °C.
Ammonium-nitrogen (NH4N) was kept below 0.5 mg NH4N L−1,
nitrite-nitrogen (NO2N) below 1 mg NO2N L−1, nitrate-nitrogen
(NO3N) ranged between 0 and 25 mg NO3N L−1, and pH ranged
between 7.8 and 7.9.
2.3. Chemical analysis

Samples of the plant protein concentrates and the formulated
diets were homogenized using a Krups Speedy Pro homogenizer
and analyzed for dry matter and ash (NMKL, 1991), crude protein
(ISO, 2005; crude protein=Kjeldahl N×6.25), crude lipid (Bligh
and Dyer, 1959) and total phosphorus (ISO, 1998). The phytate-P
content of the dietswas determined as the difference in TP (determined
by ICP-AES (ICP VISTA MPX, Varian)) before and after separation and
extraction of phytates on an anion exchange column (Harland and
Oberleas, 1986; Plaami and Kumpulainen, 1991). The essential amino
acid composition of the diets (Hardy, 2002) was determined by a com-
mercial laboratory (Eurofins Steins Laboratorium A/S, Denmark).



Table 2
Apparent nutrient digestibility coefficients (ADC, %) (mean±S.D., n=6) of the
experimental dietsa.

Dietb A B C D

Protein 91.9±0.7ab 90.6±1.3a 91.3±0.5ab 92.3±0.6b

Lipid 89.1±2.2a 89.8±2.3ab 90.0±1.4ab 92.0±0.6b

NFE 55.8±3.7d 45.3±5.7c 34.7±3.1b 28.3±5.8a

Ash 49.0±4.9 49.9±3.3 50.1±1.4 52.5±1.8
DM 85.4±1.4 83.9±1.7 82.9±0.6 82.9±1.2
TP 66.1±3.9 64.8±1.3 64.2±2.0 62.0±2.3
Phytate-P 53.0±9.9b 29.0±15.8ab 12.9±8.8a 19.9±4.3a

Digestible energy (MJ/kg)c 21.7 20.9 21.5 21.6
DP/DE (g/MJ)d 18.7 19.3 19.3 19.7

a Values not sharing a common superscript letter within a row are significantly
different (Pb0.05).

b Abbreviations: A=fish meal (FM) control, B=16% FM protein replaced by plant
protein matrix, C=31% FM replaced by plant protein matrix, D=47% FM replaced by
plant protein matrix.

c Digestible energy (DE) of the diets. Calculated by multiplying dietary nutrient
compositions (Table 1) by nutrient energy contents (c.f. Jobling, 1994: 23.7, 39.6,
17.2 MJ/kg for protein, lipid and NFE, respectively) and apparent nutrient digestibility
coefficients (Table 2).

d Digestible protein/digestible energy.
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Fecal samples from sampling periods 2 and 3 in experiment 1
were thawed, homogenized using an Ultra Turrax, and analyzed for
DM, ash, protein, lipid and TP as described for the diets. Fecal samples
from the fourth sampling period in experiment 1 were lyophilized
prior to phytate-P analysis as described for the diets.

Water samples were analyzed for total nitrogen (ISO, 1986, 1997),
total ammonia nitrogen (TAN; DS, 1975), and TP (ISO, 2004).

Carcass analyses of initial and final fish samples were carried out
by removing the digestive system of the fish to avoid contamination
from any undigested feed. The pooled carcasses were autoclaved for
1 h (120 °C), homogenized using a Braun hand processor, and ana-
lyzed for protein, lipid, DM, ash and TP as described for the diets.

2.4. Calculations

Nitrogen-free extract (NFE) was calculated as DM less the sum of
crude protein, crude lipid, and ash. The apparent digestibility coeffi-
cients (ADCs, %) of dietary nutrients and minerals, as obtained from
the direct and total collection method of measuring in experiment
1, were calculated as (Jobling, 1994):

ADCi ¼ 100T Ci−Fið Þ=Ci;

where i corresponds to a dietarymacronutrient ormineral (i.e., protein,
lipid, NFE, ash, TP or phytate-P), C is the consumed amount of i, and F is
the fecal loss of i.

Complete N and P mass-balances were set up based on the total
duration of the first experiment (24 days), and following the approach
by Cho et al. (1994) modified to measure dissolved waste directly:

X consumed ¼ X retainedþ SWXþ DWX;

where X refers to N or TP, SWX refers to solid waste N or TP, and DWX
refers to dissolvedwaste N or TP. Retained N or TPwas calculated based
on whole body chemical composition analyses of fish sampled at the
start and at the end of the experiment as (Jobling, 2001):

X retained ¼ X in biomassend–X in biomassstartð Þ=X consumed:

The solid waste output of N or TP was calculated as:

SWX ¼ 1–ADCXð ÞTX consumed:

The dissolved output of N or TP (including suspended solids) was
measured directly in the water and for inclusion in the mass-balances
calculated as:

DWX ¼ DWXt24–DWXt0ð ÞTL=X consumed;

where DWXt0 and DWXt24 refer to N or TP concentrations in water
samples obtained just prior to feeding and 24 h later, respectively,
in a tank with closed valves, and L=volume of the tank in liter. Excre-
tion of TAN was derived similarly to DWX.

The feed conversion ratio (FCR, g g−1) was calculated based
on the biomass weight gain and the registered feed intake (feed
administered− feed waste) as (Guillaume, 2001):

FCR ¼ feed intake gð Þ=weight gain gð Þ:

The specific growth rate (SGR, % d−1) was calculated based on the
overall biomass gain in the tanks as well as on the gain of tagged
individuals in each growth period in the second experiment according
to (Hopkins, 1992):

SGR ¼ 100T ln Wt–ln W0ð Þ=Δt

where Wt refers to average weight at day t, W0 refers to the average
weight at day t0, and Δt is the number of days. In addition, the thermal
growth coefficient (TGC) was calculated as follows according to
(Jobling, 2003):

TGC ¼ 1000T Wtð Þ1=3− W0ð Þ1=3T T−tð Þ
h i

where T is the temperature in °C, and t is the time in days.
2.5. Statistical analysis

Experimental data were subjected to single factor analysis of
variance (ANOVA) using Sigma Stat 3.5 to detect statistically significant
differences between treatment means. Levenes test was used to check
for homogeneity of variance within the treatment groups, and Holm
Sidak all pairwise multiple comparison of means test was applied for
testing significance of mean differences between the four treatment
groups where applicable. The significance level was set at Pb0.05, and
values are throughout the text expressed as the mean±standard
deviation.
3. Results

3.1. Digestibility (experiment 1)

The fish accepted all diets well, and little feed waste was generally
observed during the experiment (1–3.5% of the administered feed
diet−1). The apparent digestibility of crude protein ranged from
90.6 to 92.3%, and it was significantly higher for diet D than for diet
B (Pb0.011) (Table 2). The apparent digestibility of lipid increased
with organic PPC supplementation, and it was significantly higher
for diet D than for diet A (Pb0.037). The apparent digestibility of
NFE decreased almost linearly with organic PPC supplementation
and there were significant differences between all four treatment
groups (Pb0.048). The apparent digestibility of TP appeared to de-
crease with organic PPC supplementation, but the decrease was not
significant. The apparent digestibility of phytate-P was significantly
lower for diet C and D than for diet A (Pb0.040). There were no differ-
ences in the apparent digestibility of ash or DM between the treat-
ment groups. The fish in the digestibility study grew from 67.0±
7.7 g to 113.2±24.7 g during the 24 feeding days, and there were
no significant differences in SGR, TGC or FCR between dietary treat-
ment groups (Table 3).



Table 3
Feed intake (FI, kg), feed conversion ratios (FCR, feed intake (g)/weight gain (g)),
specific growth rates (SGR, % d−1), and thermal growth coefficient (TGC) of rainbow
trout obtained during a 24 days digestibility study (mean±S.D., n=3; experiment 1),
or a 57 days growth study (mean±S.D., n=2; experiment 2) when feeding the
experimental diets.

Dieta A B C D

Exp. 1
FI 0.52±0.10 0.53±0.09 0.57±0.02 0.59±0.01
FCR 0.63±0.04 0.67±0.06 0.62±0.01 0.62±0.01
SGR 2.10±0.33 1.98±0.28 2.33±0.06 2.29±0.03
TGC 0.83±0.14 0.77±0.13 0.92±0.02 0.91±0.02

Exp. 2
FI 7.76±0.76 7.81±0.15 7.52±0.65 7.82±0.34
FCR 0.75±0.01 0.78±0.03 0.73±0.03 0.78±0.01
SGRb 1.82±0.03 1.77±0.06 1.85±0.08 1.77±0.02
TGC 0.80±0.02 0.77±0.03 0.81±0.06 0.78±0.02

a Abbreviations: A=fish meal (FM) control, B=16% FM protein replaced by plant
protein matrix, C=31% FM replaced by plant protein matrix, D=47% FM replaced by
plant protein matrix.

b SGR calculated based on biomass values rather than on individually tagged fish.
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Fig. 2. Mean total phosphorus (TP) mass-balances (n=3) for juvenile rainbow trout
fed four experimental diets: A, B, C, or D, in which 0, 16, 31 or 47% fish meal protein,
respectively, was replaced by a matrix of plant protein concentrate. Data are adjusted
to 100% of the total phosphorus feed intake. Residual TP (%): 10.3±3.9ab, 14.8±1.6b,
7.9±0.9a and 11.0±2.5ab, respectively, different superscript letters indicating that
the residual values were significantly different between the dietary treatment groups
(Pb0.05). Different lower case letters between dietary treatment groups in the figure
indicate that the amount of dissolved waste TP was significantly different (Pb0.05).
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3.2. Mass-balances and waste excretion (experiment 1)

Complete nitrogen and phosphorus mass-balances for each of the
four dietary treatment groups are presented in Figs. 1 and 2, respective-
ly. Themass-balances have been standardized to a recovery rate of 100%
to ease the interpretation of thefigures, and residual N and TP values are
stated in figure footnotes. There were no significant differences in
retained N (50.9–53.2%, i.e. corresponding to 36.1–38.6 g N kg feed−1),
solidwasteN (6.9–8.6%, i.e. 5.1–6.2 g N kg feed−1) or dissolvedwasteN
(38.1–40.9%, i.e. 27.7–29.8 g N kg feed−1) between dietary treatment
groups (Fig. 1). However, the output of TAN increased significantly
(Pb0.01) with organic PPC supplementation, from 63 to 68% of dis-
solved waste N in diet A and D, respectively. The residual N varied
from −5 to −10%, indicating that more N was recovered than con-
sumed by the fish with no obvious trends related to the dietary treat-
ment groups. Residual N reflected general measurement uncertainties,
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Fig. 1.Mean nitrogen (N) mass-balances (n=3) for juvenile rainbow trout fed four
experimental diets: A, B, C, or D, in which 0, 16, 31 or 47% fish meal protein, respectively,
were replaced by a matrix of plant protein concentrate. Data are adjusted to 100% of the
nitrogen feed intake. Residual nitrogen (%): −7.6±2.1, −4.7±4.3, −9.5±2.2 and
−10.4±4.8 for diet A, B, C and D, respectively. Different lower case letters between
dietary treatment groups indicate that the amount of dissolved waste N recovered as
NH4N was significantly different (Pb0.05).
time variation in sampling, and the fact that different analytical
methods had to be applied for measuring retained and solid vs.
dissolved waste N.

The phosphorus mass-balances (Fig. 2) showed no differences in
retained TP (51.5–53.9%, i.e. 7.4–7.8 g TP kg feed−1) or solid TP
waste (37.0–41.3%, i.e. 5.4–6.0 g TP kg feed−1), while the output of
dissolved waste TP decreased significantly (P=0.018) with PPC sup-
plementation from 10.5% in the diet A to 3.0% in diet D corresponding
to a decrease from 1.5 to 0.4 g TP kg feed−1. The residual TP varied
from 8 to 15% with no obvious trends related to the dietary treatment
groups, meaning that less TP was recovered than consumed by the
fish. As for N, residual TP reflected general measurement uncer-
tainties, time variation in sampling, and the fact that different analyt-
ical methods had to be applied for measuring retained and solid
versus dissolved waste TP.

3.3. Growth and feed conversion ratio (experiment 2)

The fish generally accepted all diets, and the sum of feed waste
was less than 1% of the administered feed per diet. The fish grew
from an average initial weight of 65.7±13.3 g to an average final
weight for all dietary treatment groups of 182.0±48.1 g during the
57 feeding days of the second experiment. There were no significant
differences in overall SGR, TGC or FCR between the dietary treatment
groups during the 57 feeding days (Table 3). Twelve fish died during
the study, and the deaths were not associated with any specific die-
tary treatment group.

4. Discussion

Organic production of herbivorous and omnivorous aquaculture
species such as tilapia and catfish appears to be relatively straight for-
ward as organic feedstuff may largely cover their nutritional needs
and therefore readily replace conventional feedstuff (e.g., Craig and
Mclean, 2005; Li et al., 2006). Formulating organic diets for carnivo-
rous species is a much larger challenge due to their high protein/
essential amino acid requirement and the ban against adding
synthetic amino acids in organic feed (EU, 2007). The present study
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showed that an organic PPC matrix consisting of pea, horsebean and
rapeseed in a ratio composed to optimize the dietary amino acid com-
position may replace 47 of fish meal protein (corresponding to 44% of
total dietary protein) without negatively affecting fish performance.
The growth rate, thermal growth coefficient, and FCR were thus sim-
ilar for all dietary treatment groups both when calculated based on
the total feeding period of 57 days in the second experiment, and
when calculated based on the 24 feeding days in the digestibility
trial. These results are similar to findings for cobia (R. canadum),
where Lunger et al. (2007) showed that 40% of fish meal protein
may be replaced by different organically certifiable, individually sup-
plemented protein sources (yeast-derived protein, soybean meal,
soybean isolate, or hemp seedmeal) without negatively affecting per-
formance. Lunger et al. (2006) previously showed that a higher inclu-
sion level of yeast-derived protein (50–100%) had detrimental effects
on juvenile cobia performance as well as on various biological indices
(muscle ratio, visceral somatic index, hepatosomatic index). Similar-
ly, an equal blend of four alternative, organic protein sources repla-
cing 92% of fish meal in a diet for juvenile cobia was shown to lead
to poor performance and 53% lower survival rate compared to fish
fed a fish meal control diet, and no fish survived 100% replacement
of fish meal (Lunger et al., 2007). These results were attributed to a
lack of essential amino acids. Indices of incipient amino acid imbal-
ance were also observed in the present study. Hence, whereas there
were no overall differences in the N mass-balances between the
four treatment groups, there was a significant increase in the excre-
tion of NH4N at the highest organic PPC inclusion level. Ammonium-
nitrogen is the main nitrogen waste product of protein catabolism
in fish (Kaushik and Cowey, 1991), and an increase in the excretion
of NH4N indicates that the fish were catabolizing a relatively larger
share of the digested protein compared to the other treatment groups
at the expense of channeling it into growth. The dietary content of
methionine and threonine decreased with organic PPC supplementa-
tion, and the concentration of methionine was below that generally
recommended for rainbow trout (Hardy, 2002). This substantiates
the hypothesis that fish performance was not improved at the highest
PPC inclusion level despite a higher apparent protein digestibility due
to a shortage of methionine. A potential amino acid imbalance and
the consequences on protein catabolismmay also explain why the in-
crease in apparent lipid digestibility at the highest PPC inclusion level
did not result in improved growth. The “surplus” energy obtained
from the improved apparent lipid digestibility may thus have been
deposited in the fish or potentially spent on covering increased ener-
gy expenditures associated with increased NH4N excretion (Wilkie,
2002).

Anti-nutrients in plant feed crops constitute a bigger problem in or-
ganic than in conventional fish farming due to the restrictions against
the use of chemically synthesized, solvent-extraction processes
(EU, 2007). Dehulling and extrusion do not remove all anti-nutrients
(Francis et al., 2001; Krogdahl et al., 2010). Saponins and non-starch
polysaccharides (NSPs) may be able to withstand thermal processing
during formulation and extruding, whereas protease inhibitors, phytic
acid, lectins, tannins and glycosinolates are more heat labile (Francis
et al., 2001; Krogdahl et al., 2010). The problem with anti-nutrients is
further amplified by the fact that the quantity of many anti-nutrients
is batch/strain related and influenced by growing conditions (e.g.,
Gatlin et al., 2007; Tripathi and Mishra, 2007).

Anti-nutritional effects of for example soluble NSPs in soybean are
hypothesized to involve binding or trapping and subsequent excre-
tion of particularly bile salts, leading to reduced nutrient absorption
in NSP rich diets (Gatlin et al., 2007). The effects may be combined
with possible gradual pathological changes in the intestinal micro-
biota or mucosal morphology (Drew et al., 2007) leading to a lower
nutrient uptake. Intestinal enteritis has been observed in Atlantic
salmon (Salmo salar) exposed for a few weeks to a diet with 10% soy-
bean meal (Bæverfjord and Krogdahl, 1996), and anti-nutrients in
plant feed stuffs other than soybean may cause intestinal inflamma-
ble responses in salmonids (Krogdahl et al., 2010).

The composition and levels of anti-nutrients apart from phytate-P
were not investigated in the organic ingredients examined in the pre-
sent study, but the more or less linear decrease in the apparent NFE
digestibility with organic PPC supplementation indicates that the
diets contained increasing concentrations of indigestible carbohy-
drates. The decrease in the apparent NFE digestibility did not appear
to affect growth, which was probably due to the generally low NFE
content in the diets (13–14%).

Aside from the problems of anti-nutrients discussed above, re-
strictions on organic plant protein processing methods further limit
the inclusion level of organic PPCs due to the low protein content
that can be obtained in the ingredients. Hence, following dehulling,
grinding and air classification, the protein concentrations of the or-
ganic PPC in the present study were equal to or below 577 g kg−1

DM, which is well below the desired 700 g kg−1 DM typical for fish
meal (Gaylord et al., 2010). This fact limits the inclusion level of or-
ganic PPC taking into account that rainbow trout diets should prefer-
ably include at least 40% protein (Hardy, 2002; Kim et al., 1991; NRC,
1981).

Phytate-phosphorus is another ANF of concern when using organ-
ic PPC, as this form of phosphorus is generally of limited availability
to fish (Cao et al., 2008; Dalsgaard et al., 2009; Ellestad et al., 2002;
Pallauf and Rimbach, 1997; Rodehutscord et al., 2000; Sajjadi and
Carter, 2004). In the present study, the phytate-P concentration in-
creased with increasing organic PPC supplementation, constituting
9% of TP in diet A and 22% of TP in diet D. Consistent with this,
there appeared to be a trend towards decreasing apparent TP digest-
ibility (Table 2) accompanied by a decreasing output of dissolved
waste TP (Fig. 3). The decreasing trend in apparent TP digestibility
was most likely due to the lower apparent phytate-P digestibility in
diet C and D compared to diet A. The relatively high apparent phy-
tate-P digestibility in diet A and B should probably be held up against
the low phytate-P concentration in the diets and consequently very
low and varying replicate phytate-P levels recovered in the feces. Al-
ternatively, the high apparent phytate-P digestibility may reflect a
limited capacity of rainbow trout to hydrolyze phytic acid and render
the phosphorus available for uptake, or the presence of low concen-
trations of endogenous plant phytase in the PPC matrix.

From an environmental point of view, a decrease in dissolved
waste TP may seem appealing, as this waste fraction is difficult to re-
move and may lead to eutrophication in watersheds receiving the
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aquaculture effluent (Dalsgaard and Pedersen, 2011). From a fish
point of view, less P will be available for growth as the dietary phy-
tate-P concentration increases, and the fish may eventually become
P-limited. The urinary P output, included in the dissolved waste TP
fraction in the present study, may be used as an indicator of P deficien-
cy in rainbow trout as the concentration decreases to an absolutemin-
imum when the fish become P-limited (Dalsgaard and Pedersen,
2011; Sugiura et al., 2000a). Due to an unexpectedly high TP and low
phytate-P content in the PPC diets, the fish in the present study did
not appear to be P-limited even at the highest PPC inclusion level.
The availability of TP in diet D, obtained with a FCR of 0.62 and stan-
dardized to a FCR of 1 in order to compare with other studies (i.e.:
14.6 g TP kg−1 dry feed∗TP apparent digestibility62%∗FCR0.62 /FCR1),
was 5.56 g TP kg−1 dry feed. This value is similar to the breakpoint
value of similar size fish found by Dalsgaard and Pedersen (2011)
above which the dissolved P concentration starts increasing. In com-
parison, Sugiura et al. (2000b) found breakpoint values of 5.85 and
4.42 g available P kg−1 dry feed for 200 and 400 g trout, respectively.

Based on the phosphorus mass balance results, it can be derived
that there in theory would have been no discharge of dissolved
waste TP at a PPC inclusion level of 72%, equal to a pea:horsebean:
rapeseed inclusion ratio of approximately 28:26:17 (Fig. 3). Such a
high inclusion level would almost certainly not be able to fulfill the
phosphorus requirement of the fish. There thus appears to be a min-
imummetabolic requirement and concomitant excretion of phospho-
rus below the dietary breakpoint value (Dalsgaard and Pedersen,
2011), suggesting that fish fed available dietary phosphorus concen-
trations below the breakpoint value will be forced to utilize intrinsic
phosphorous reserves. Furthermore, the amino acid requirement of
the fish would almost certainly not be satisfied at this high inclusion
level as observed by Lunger et al. (2006, 2007) when replacing more
than 40% fish meal protein with organic protein in feed for cobia.

To realize a PPC inclusion level higher than in the present study
would in practice require that organic processing techniques are im-
proved to optimize the protein/amino acid content in relevant plant
protein concentrates and reduce the level of anti-nutrients. The inclu-
sion of PPCs was only examined at a fixed dietary protein level. How-
ever, the DP/DE ratios (digestible protein/digestible energy; 19.3–
19.7, Table 2) of the PPC diets were only slightly above the optimal
DP/DE value for juvenile rainbow trout given an optimum dietary
amino acid pattern (Green and Hardy, 2008). It will therefore be dif-
ficult to reduce the overall dietary protein level in an organic diet
much more than in the present study, without negatively affecting
fish performance and N waste excretion.

In addition to the protein/amino acid content, plant crop batches
may vary significantly in their phytate/TP content, influenced further
by the particular strain/variety, soil type, type of fertilization used,
growing season, etc. (Manangi and Coon, 2006; Tagoe et al., 2010).
Preceding TP and phytate-P analysis of plant protein ingredients are
therefore required to optimize the dietary inclusion level with respect
to available phosphorus, and to ensure a minimum phosphorus load
discharge in water effluents. All of this makes it an even bigger chal-
lenge to establish the maximum dietary level of organic plant protein
concentrates that may be included in feed for organic carnivorous
fish.

5. Conclusion

The present study showed that it is possible to replace 47% of fish
meal protein (corresponding to 44% of total dietary protein) with ama-
trix of organic plant protein concentrates consisting of pea:horsebean:
rapeseed in a ratio of 1.07:1.00:0.66without affecting fish performance.
However, the excretion of NH4N increased with increasing PPC substi-
tution, suggesting that the fishwere close to experiencing an imbalance
in the dietary, indispensable amino acid composition. Furthermore, the
recovery of dissolved TP decreased with increasing PPC substitution,
indicating that the availability of dietary phosphoruswas decreasing to-
wards an absoluteminimal dietary requirement at the highest inclusion
level. As long as amino acid supplementation is not allowed in organic
feed formulation for carnivorous species it will be difficult to replace
much larger fractions of fish meal protein by organic plant protein con-
centrates in feed for organic trout than demonstrated in the present
study.
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