Bestimmungsfaktoren für den Ertrag sowie die Qualitätsausbildung von ökologisch erzeugten Kartoffeln unter Verwendung der multiplen Regressionsanalyse

HERWART BÖHM, ANNKATHRIN GRONLE, KIRSTEN BUCHECKER, WILFRIED DREYER, CHRISTIAN LANDZETTEL, SYLVIA MAHNKE-PLESKER

1 Johann Heinrich von Thünen-Institut, Institut für Ökologischen Landbau, Trenthorst, 23847 Westerau, herwart.boehm@vti.bund.de
2 ttz, Sensoriklabor, Lengstr. 3, 27572, Bremerhaven, Kbuch@ttz-bremerhaven.de
3 Ökoring e.V., Bahnhofstr. 15, 27374, Visselhövede, w.dreyer@oeoekoring.de
4 Bioland-Beratung, Auf dem Kreuz 58, 86152, Augsburg, clandzetttel@bioland-beratung.de
5 Qualitäts-Management-Beratung für Öko-Produkte, Niddastr. 41, 63329, Egelsbach, Mahnke-Plesker@t-online.de

Zusammenfassung
Mit Hilfe multipler Regressionsanalysen wurden die Gesamtdaten des Projektes statistisch analysiert. Hierfür wurde die SAS-Prozedur GLMSELECT eingesetzt, da sie die relativ einfache Einbindung von kategoriellen Variablen bei gleichzeitiger Möglichkeit zur automatischen Variablenselektion erlaubt. Für den Ertrag konnte gezeigt werden, dass dieser wesentlich durch den Standort (Bodenart und Witterung), die zur Verfügung stehende Wachstumsphase (Anzahl Tage bis zum Befall mit Phytophthora infestans), die Beregnungsmenge und die Nährstoffversorgung der Böden sowie der Bodenbearbeitung bestimmt wird. Auch für den Stärkegehalt erfolgte eine recht gute Modellanpassung, weniger eindeutig waren die Ergebnisse für die Bestimmungsfaktoren der Sensorik.

Schlüsselworte: Kartoffeln, multiple Regressionsanalyse, Ertrag, Stärke, Nitrat, Sensorik

Abstract
Factors determining yield and quality of organically produced potatoes using multiple regression analysis

All project data were statistically analyzed using multiple regression analysis. GLMSELECT, an SAS procedure, was used as this allows relatively easy integration of categorical variables with the simultaneous possibility of automatic variable selection. It was possible to show for the parameter 'yield' that this is determined to a considerable extent by location (soil type and weather), available growth period (number of days until infection by Phytophthora infestans), amount of irrigation and nutrient supply in the soil, as well as soil cultivation. Also for the starch content was a quite good fit of the model, less clear were the results for the determinants of sensory quality.

Keywords: potato, multiple regression analysis, yield, starch, nitrate, sensory quality
Einleitung

Material und Methoden

Ergebnisse und Diskussion

Für die multiple Regression wurden im ersten Schritt nach fachlichen Gesichtspunkten die Merkmale identifiziert, die einen Einfluss auf den Zielparameter haben könnten. Somit wurde die Regressionsanalyse für die Zielgröße Ertrag mit zum Teil anderen Parametern (Variablen) durchgeführt als z.B. für die die sensorischen Zielgrößen „bitter“ und „süß“.

Ertrag

Für die Zielgröße Ertrag gingen folgende Variablen in die Prozedur ein:

Bodenart, Bodenpunkte, pH-Wert, Gehalte pflanzenverfügbare Nährstoffe P und K, Bodenbearbeitung zu Kartoffeln, Pflanzgutqualität, Pflanzgutvorbereitung, eingesetzte Pflanzenstärkungsmittel zur Knollenbehandlung (inkl. Kupferbeizung), Vorfrucht kombinationen, Art der Wirtschaftsdünger, Art der organischen Handelsdünger, Gesamtstickstoff (kg N/ha) gedüngt mit Wirtschaftsdüngern bzw. organischen Handelsdüngern, Beregnungsmenge, Kaliumdüngung, Anzahl der Behandlungen gegen Kartoffelkäfer, Anzahl der Tage vom Pflanzen bis zum Beginn des Krautfäulebefalles (Phytophthora in-
festans), Temperatursumme, Niederschlags-
summe, Globalstrahlung (jeweils für den
Zeitraum vom 01. Juni bis zum 15. August).

In Tabelle 1 sind die Ergebnisse der multipli-
len Regressionsanalyse zum einen getrennt
für die drei Sorten Princess, Ditta und Nicola
und zum anderen für alle 3 Sorten unter Be-
rücksichtigung des Sorteneffektes im Modell
dargestellt. Dabei ist zu erkennen, dass bei
der Verrechnung getrennt nach Sorten das
adjustierte R² zwischen 0,65 und 0,72 liegt,
d.h. durch das Modell können zwischen 65
und 72 % der Varianz erklärt werden. Wird
die multiple Regressionsanalyse für alle 3
Sorten durchgeführt, so können nur noch
52 % der Varianz durch das Modell erklärt
werden, wobei der Sorteneffekt im Modell
berücksichtigt wurde. Den höchsten Ertrag
weist demnach die Sorte Nicola auf, im Ver-
gleich dazu ist der Ertrag der Sorte Ditta
gegenüber der Referenzsorte Nicola leicht
und der Ertrag der Sorte Princess deutlich
vermindert. Dies steht in Übereinstimmung
mit den Ertragsauswertungen, die für Nicola
einen Durchschnittsertrag über alle Jahre und
Standorte von 269 dt/ha, für Ditta 261 dt/ha
und für Princess 238 dt/ha auswiesen.

Übereinstimmend wurde in allen Modellen
die Bodenart als signifikante Variable identi-
fiziert, die einen Einfluss auf den Ertrag hat.
Die leichten Sandorte (Sand, lehmige San-
de) wurden als Referenzgröße gewählt, so
dass der Schätzwert für die anderen Boden-
arten Auskunft darüber geben, ob der Ertrag
bei diesen im Vergleich zu den leichten
Standorten zu- oder abnimmt. Es zeigen sich
mit Ausnahme der annoomigen Standorte bei
der Sorte Princess stets höhere Erträge ge-
genüber den leichten Standorten. Der Ein-
fuss der annoomigen Standorte wird in den
Modellen unterschiedlich bewertet, im Ge-
samtmödell für alle 3 Sorten wird jedoch
auch hier ein positiver Effekt ausgewiesen.

In den multiplen Regressionsanalysen für die
drei Sorten werden insgesamt mehr Variab-
len berücksichtigt als in dem Gesamtmodell.
So zeigen viele Variablen wie z.B. die
Pflanzgutqualität, der Einsatz von Pflanzen-
stärkungsmittel, die Vorfrucht kombinatio-
nen, die Arten der eingesetzten Wirtschafts-
und organischen Handelsdünger und weitere
Variablen einen signifikanten Einfluss nur
bei einer oder zwei Sorten (Tab. 1). Betracht-
et man zudem ihre Wirkung in den Modell-
en, so treten bei den Vorfrucht kombination
der Sorte Ditta gegenüber der gewählten
Referenz-Vorfrucht kombination Getreide –
Getreide mit einer Ausnahme positive Effek-
te, während aber bei der Sorte Nicola mit
einer Ausnahme alle anderen Vorfrucht kom-
binationen einen negativen Effekt auf den
Ertrag aufweisen. Im Gesamtmodell waren
diese Effekte jedoch nicht mehr signifikant
und wurden wie auch andere Variablen nicht
mehr berücksichtigt.

Daher wird im Folgendem nur noch auf das
Ergebnis der multiplen Regressionsanalyse,
verrechnet über alle Sorten eingegangen,
wenngleich die Anzahl der für das Modell
signifikanten Variablen entsprechend geringer
ausfällt und das adjustierte R² mit 0,52
deutlich niedriger ist. Als signifikante Vari-
ablen gehen die bereits besprochene Boden-
art ein und darüber hinaus die Variablen
Phosphorgehalt im Boden, Bodenbearbei-
tung, Knollenbehandlung, Beregnungsmenge,
Anzahl der Kartoffelkäferbehandlungen, Anzahl der Tage zwischen
Pflanztermin und Beginn der Phytophthora-
Infektion sowie alle drei Variablen der Wit-
terung (Tab. 1).

Hinsichtlich der Bewertung der Variablen
mit ihren Ausprägungsstufen kann für die
Bodenarten festgehalten werden, dass die
leichten Sandstandorte die niedrigsten Erträ-
ge bedingen. Dies steht in Übereinstimmung
mit Angaben aus der Literatur (vgl. Möller et
al. 2003).

Die Phosphorversorgung, bzw. der pflanzen-
verfügbare Gehalt an Phosphor im Boden
wurde ebenfalls als signifikante Variable
identifiziert. Auf den ersten Blick verwun-
dert dies, doch vor dem Hintergrund das 174
von den insgesamt 284 Schlägen eine Phos-
phorversorgung in der Versorgungsstufe A und B (Landwirtschaftskammer Schleswig-Holstein) aufwiesen, kann die Phosphorverfügbarkeit durchaus von Bedeutung sein. Die Kaliumversorgung der Böden wurde nicht in das Modell einbezogen. Dies hängt damit zusammen, dass zum einen die Böden mit Kalium besser versorgt waren als mit Phosphor und zum anderen die Mehrzahl der Betriebe, d.h. auf 185 von 284 Schlägen mehr als 50 kg K/ha gedüngt wurde, im Mittel dieser Schläge waren es 140 kg K/ha. Damit wird deutlich, dass den Landwirten die Wichtigkeit einer ausreichenden Kaliumversorgung der Kartoffeln bewusst ist, um entsprechende Qualitäten und eine lagerfähige Ware zu erzeugen.

Ganz entscheidend ist die effektiv zur Verfügung stehende Vegetationszeit, hier in der Variable Anzahl Tage vom Pflanzen bis zum Beginn des Befalls mit P. infestans ausgedrückt. Damit wird gleichzeitig deutlich, dass der Befall mit P. infestans eine relevante Einflussgröße hinsichtlich des im Ökolo-
Tabelle 1: Berechnung der multiplen Regression mittels der Prozedur GLMSELECT für den Ertrag (dt/ha) getrennt für die drei Sorten und in einem Gesamtmödell mit Berücksichtigung der Sorten (Datenbasis 2007 – 2009)

<table>
<thead>
<tr>
<th>adj R²</th>
<th>Princess 0.6634</th>
<th>Ditta 0.6480</th>
<th>Nicola 0.7188</th>
<th>Gesamtmödell 0.5203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-232.98, -1.82</td>
<td>610.67, 4.00</td>
<td>-159.32, -1.00</td>
<td>94.77, 1.31</td>
</tr>
<tr>
<td>Sorte</td>
<td>1 Princess</td>
<td>2 Ditta</td>
<td>3 Nicola</td>
<td></td>
</tr>
<tr>
<td>Bodenart</td>
<td>anmoorig</td>
<td>schwer</td>
<td>mittel</td>
<td>leicht</td>
</tr>
<tr>
<td>1 amoorig</td>
<td>-28.79, -0.54</td>
<td>54.21, 2.22</td>
<td>36.68, 1.39</td>
<td>333.37, 4.99</td>
</tr>
<tr>
<td>2 schwer</td>
<td>54.21, 2.22</td>
<td>36.68, 1.39</td>
<td>6.91, 0.04</td>
<td>36.45, 2.51</td>
</tr>
<tr>
<td>3 mittel</td>
<td>24.35, 1.35</td>
<td>57.74, 2.60</td>
<td>37.88, 1.81</td>
<td>42.70, 3.43</td>
</tr>
<tr>
<td>4 leicht</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅ (mg/100g Boden)</td>
<td>3.96, 2.86</td>
<td>4.81, 3.03</td>
<td>2.18, 2.52</td>
<td></td>
</tr>
<tr>
<td>K₂O (mg/100g Boden)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodenbearbei- tung</td>
<td>1 pfleglos</td>
<td>2 Pfleg</td>
<td>28.09, -1.95</td>
<td></td>
</tr>
<tr>
<td>Vorkultur</td>
<td>1 Kupfer</td>
<td>2 Nachbau</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Z-Pflanzgut- qualitaten</td>
<td>1 Kupfer</td>
<td>2 Nachbau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Kupfer</td>
<td>-39.23, -1.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Nachbau</td>
<td>-55.33, -1.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Rhizoval</td>
<td>-137.74, -2.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Proradix</td>
<td>79.72, 1.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ChlorPlant</td>
<td>104.33, -1.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 EM</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 keine</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pflanzgut- vorbereitung</td>
<td>1 vorgekümmt</td>
<td>2 keimgesät</td>
<td>3 keine</td>
<td>0.93</td>
</tr>
<tr>
<td>Vorfruchtkombination</td>
<td>1 KG - KG</td>
<td>2 KG - GT</td>
<td>3 KL - GT</td>
<td>4 GM - GT</td>
</tr>
<tr>
<td>1 KG - KG</td>
<td>26.66, 0.59</td>
<td>-35.21, -0.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 KG - GT</td>
<td>28.29, 0.75</td>
<td>22.84, 0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 KL - GT</td>
<td>197.77, 4.44</td>
<td>-34.64, -1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 GM - GT</td>
<td>30.09, 0.83</td>
<td>-4.39, -0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 GT - KG</td>
<td>68.31, 2.12</td>
<td>-115.09, -3.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 GT - KL</td>
<td>27.96, 0.71</td>
<td>-33.15, -0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 GT - GM</td>
<td>-20.03, -0.54</td>
<td>-40.89, -0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Sonstige</td>
<td>29.87, 1.09</td>
<td>-28.16, -1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 GT - GT</td>
<td>0.03</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaftsdüngmg. (WÜX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Düngungsart</td>
<td>1 Biogaserzeugen</td>
<td>2 Gefüllermantel</td>
<td>3 Pferdemantel</td>
<td>4 Rindermantel</td>
</tr>
<tr>
<td>1 Biogaserzeugen</td>
<td>-12.19, -0.49</td>
<td>68.83, 1.58</td>
<td>27.12, 0.98</td>
<td></td>
</tr>
<tr>
<td>2 Gefüllermantel</td>
<td>-43.02, -1.26</td>
<td>32.09, 0.78</td>
<td>43.98, 1.47</td>
<td></td>
</tr>
<tr>
<td>3 Pferdemantel</td>
<td>-39.06, -0.72</td>
<td>-44.60, -0.86</td>
<td>-31.15, -0.62</td>
<td></td>
</tr>
<tr>
<td>4 Rindermantel</td>
<td>-112.38, -3.15</td>
<td>101.37, 2.11</td>
<td>45.00, 1.20</td>
<td></td>
</tr>
<tr>
<td>5 Schafsmantel</td>
<td>-158.51, -2.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (Rindermantel)</td>
<td>-54.09, -1.24</td>
<td>111.03, 2.45</td>
<td>29.22, 0.55</td>
<td></td>
</tr>
<tr>
<td>7 Champignonsubstrat</td>
<td>-20.61, -0.44</td>
<td>222.57, 1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Gülle u. Mist</td>
<td>145.72, 1.74</td>
<td>-115.61, 2.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 keine WÜX</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handels- dünungsm. (HÜX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Düngungsart</td>
<td>1 Haarmehl-Präparat</td>
<td>2 Biokläranalytik</td>
<td>3 PPL</td>
<td>4 PPL + Haarmehl.</td>
</tr>
<tr>
<td>1 Haarmehl-Präparat</td>
<td>76.15, 2.18</td>
<td>14.26, 0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Biokläranalytik</td>
<td>84.92, 2.35</td>
<td>-49.80, -0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 PPL</td>
<td>-21.73, -0.49</td>
<td>-197.81, -3.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 PPL + Haarmehl.</td>
<td>60.93, 0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Rapschrot</td>
<td>43.88, 1.05</td>
<td>-76.18, -1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Grüngutkompost</td>
<td>162.62, 3.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 keine HÜX</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaftsforderung (kg N/Ha)</td>
<td>-1.25, -2.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>organische Handelsdünger (kg N/Ha)</td>
<td>-0.55, -2.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaliumdüngung (kg N/Ha)</td>
<td>0.35, 2.64</td>
<td>0.38, 2.31</td>
<td>0.25, 1.80</td>
<td></td>
</tr>
<tr>
<td>Beregnungsmenge (mm)</td>
<td>0.88, 2.83</td>
<td>0.60, 3.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl Karbofleckerhaben</td>
<td>35.45, 2.29</td>
<td>32.66, 2.49</td>
<td>-9.22, -1.53</td>
<td></td>
</tr>
<tr>
<td>Tage zw. Pflanzen und P1-laegern</td>
<td>2.11, 4.28</td>
<td>1.31, 4.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatursumme (01.06. - 15.09)</td>
<td>-0.66, -3.88</td>
<td>-0.94, -5.50</td>
<td>-0.39, -4.27</td>
<td></td>
</tr>
<tr>
<td>Globalstrahlungsumme (01.06. - 15.09)</td>
<td>0.008, 5.80</td>
<td>0.007, -1.52</td>
<td>0.004, 3.49</td>
<td>0.005, 5.89</td>
</tr>
<tr>
<td>Niederschlagssumme (01.06. - 15.09)</td>
<td>-0.29, 4.60</td>
<td>-1.04, -4.90</td>
<td>0.10, -4.66</td>
<td></td>
</tr>
</tbody>
</table>

Abkürzungen: GT = Getreide, KG = Kleegras, KL = Körnerleguminosen, GM = Gemüse, Sonstige = Ölpflanzen, Ackergras, Ganzpflanzensilagegemenge etc. PPL = Potato Protein Liquid, EM = Effektive Mikroorganismen

Bei den kategorisiellen Variablen wurden jeweils Referenzkategorien gewählt, die als Vergleichsbasis (ausgewiesen mit 0,00) für die anderen Kategorien dienen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schätz-wert</td>
<td>t-Wert</td>
<td>Schätz-wert</td>
<td>t-Wert</td>
<td>Schätz-wert</td>
<td>t-Wert</td>
</tr>
<tr>
<td>Intercept</td>
<td>0,6764</td>
<td>5,41</td>
<td>0,4265</td>
<td>2,91</td>
<td>0,4633</td>
<td>1,90</td>
</tr>
<tr>
<td>Sorte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Pinnacea</td>
<td>-2,95</td>
<td>-11,99</td>
<td>22,25</td>
<td>1,90</td>
<td>3,25</td>
<td>4,87</td>
</tr>
<tr>
<td>2 Otto</td>
<td>-1,27</td>
<td>-5,18</td>
<td>-23,47</td>
<td>-2,54</td>
<td>0,08</td>
<td>0,11</td>
</tr>
<tr>
<td>3 Nicola</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Bodenart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ammoom</td>
<td>-0,03</td>
<td>-0,14</td>
<td>-31,25</td>
<td>-2,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Schwert</td>
<td>0,96</td>
<td>2,45</td>
<td>20,93</td>
<td>1,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 miltel</td>
<td>0,87</td>
<td>2,94</td>
<td>43,00</td>
<td>3,78</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>4 leidet</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodenpunkte</td>
<td>-0,03</td>
<td>-2,91</td>
<td>-1,09</td>
<td>-3,02</td>
<td>-0,03</td>
<td>-1,97</td>
</tr>
<tr>
<td>pH-Wert (Boden)</td>
<td>0,45</td>
<td>1,95</td>
<td>17,83</td>
<td>2,06</td>
<td>0,07</td>
<td>1,75</td>
</tr>
<tr>
<td>P2O5 (mg/100g Boden)</td>
<td>0,07</td>
<td>1,75</td>
<td>0,09</td>
<td>0,07</td>
<td>0,09</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Abkürzungen: GT = Getreide, KG = Kleegras, KL = Körnerleguminosen, GM = Gemüse, Sonstige = Ölfpazen, Ackergras, Ganzpflanzensilagegemenge etc., PPL = Potato Protein Liquid, EM = Effektive Mikroorganismen

Bei den kategoriellen Variablen wurden jeweils Referenzkategorien gewählt, die als Vergleichsbasis (ausgewiesen mit 0,00) für die anderen Kategorien dienen.

Dagegen nicht einzuordnen ist das Ergebnis zur Bekämpfung der Kartoffelkäfer, da eindeutig nachgewiesen wurde, dass die auf den beteiligten Projektbetrieben eingesetzten Mittel eine gute Wirkung gegenüber den Kartoffelkäfern besitzen (Kühne 2007, 2009). Eine Überprüfung der Befallsstärke sowie der Wirksamkeit der Behandlungen wurde im Rahmen des Projektes jedoch nicht erhoben, so dass die hier gewählten Ausprägungsstufen der Variable, hier gewählt die Anzahl der durchgeführten Behandlungen, nicht geeignet war. Zum anderen könnte aus diesem Ergebnis aber auch abzuleiten sein, dass es sich bei diesen Kartoffelbeständen ohnehin um bereits geschwächte Bestände gehandelt hat, bei denen der Einsatz der Pflanzenschutzmittel keinen positiven Effekt mehr bewirken konnte.

Die ausgewählten Parameter zur Beschreibung der Witterungsbedingungen haben alle einen Einfluss, dennoch kann hier keine eindeutige Zuordnung und somit keine Interpretation erfolgen.

Stärkegehalt

Für die Inhaltsstoffe Stärke und Nitrat sowie für die sensorischen Parameter Süße und Bitter, jeweils gemessen nach Ernte und Lagerung, wurden neben den für den Ertrag bestimmten Variablen zusätzlich die äußeren Qualitätsparameter wie die Bonituren auf Rhizoctonia, Dry Core, Schorf und Drahtwurm befällt sowie der Nitratgehalt im Modell für Stärke bzw. der Stärkegehalt im Modell für Nitrat sowie beide Variablen bei den sensorischen Parametern einbezogen. In der multiplen Regressionsanalyse wurde, wie für das Gesamtmodell für den Ertrag, der Sorteneffekt einbezogen (Tab. 2). Für die Untersuchungen nach Lagerung wurde zusätzlich die Variable Lagerungsart aufgenommen, wobei hier nur die Daten der Jahre 2008 und 2009 einbezogen werden konnten.

Für den Stärkegehalt beträgt das adjustierte $R = 0.71$ und ist damit deutlich besser als für den Ertrag, d.h. 71% der Varianz können durch das Modell erklärt werden. Im Modell wurde wiederum der Sorteneffekt berücksichtigt und spiegelt die Verhältnisse der im Projekt gemessenen Stärkegehalte wider. Die Sorte Nicola wies die höchsten Stärkegehalte (13,3 %) gefolgt von Ditta (12,3 %) und Princess (9,8 %). Maßgeblich gehen weiterhin die Bodenart, die Bodenpunkte sowie der pH-Wert, die Pflanzengutqualität, die Art der Handelsdünger, die gedüngte N-Menge über Wirtschaftsdünger, die Beregnungsmenge, die zur Verfügung stehen Vegetationszeit bis zum Befallsbeginn mit P. infestans, die Witterungsparameter sowie der Drahtwurmbefall und der Nitratgehalt in den Knollen ein (Tab. 2).

Das Regressionsmodell zeigt, dass mit zunehmender Beregnungsmenge eine gewisse Reduzierung des Stärkegehaltes einhergeht. In der Regel werden die Stärkegehalte durch Beregnung erhöht, allerdings werden in Einzeljahren auch geringere Gehalte gemessen (Fricke 2006).

Entsprechend deutlich ist wiederum der Zusammenhang zwischen der zur Verfügung stehenden Wachstumsdauer und dem Stärkegehalt. Dies wurde im Jahr 2007 sehr deutlich, als die Kartoffeln, vor allem der Sorte Princess, aufgrund des frühzeitigen Befalls mit P. infestans sehr niedrige Stärkegehalte aufwiesen, was in diesem Jahr auch durch den Korrelationskoeffizienten von 0,49 zum Ausdruck kam. Dieser Zusammenhang ist auch vielfach in der Literatur beschrieben (Landzettel & Dreyer 2011a, in diesem Heft).

Der negative Zusammenhang zwischen Stärke- und Nitratgehalt wird in der Literatur beschrieben und ist eventuell darauf zurückzuführen, dass bei Kartoffelbeständen, deren Blattpaar verletzt oder nicht mehr intakt ist (z.B. durch P. infestans) die Photosyntheseleistung verringert wird. Dies kann bewirken, dass die Nitratgehalte nicht durch die eingelagerte Stärke verringert werden (Konzentrationseffekt) (Kolbe 1996).

Nitratgehalt

Für den Nitratgehalt in den Kartoffeln wurde ein adj. R = 0,43 errechnet, d.h. nur 43 % der Varianz können durch die im Modell berücksichtigten Faktoren erklärt werden. Damit unterscheidet sich die Aussagekraft deutlich von den zuvor beschriebenen Parametern Ertrag und Stärkegehalt. Der vom Modell berücksichtigte Sorteneinfluss bestätigt die erhobenen Werte, d.h. die geringsten Nitratgehalte wies die Sorte Ditta mit 89,4 mg/kg FM auf, die höchsten die Sorte Princess (165 mg/kg FM) und dazwischen lagen die Nitratgehalte der Sorte Nicola (98 mg/kg FM).

Auch im Modell wurden wiederum die Bodenart und die Bodenpunkte berücksichtigt, allerdings in gegenläufiger Weise. Böden mit hoher N-Nachlieferung, d.h. in der Regel die besseren Böden können sich nachteilig auf die Nitratgehalte der Knollen auswirken (Kolbe 1996).

Sensorische Ausprägungen im Geschmack

Schlussfolgerungen

Multiple Regressionsanalysen bieten die Möglichkeit die Ursache der Varianz bestimmter Zielgrößen mit Hilfe verschiedener

Danksagung
Die Untersuchungen wurden im Rahmen des Projektes “Optimierung der ökologischen Kartoffelproduktion” durchgeführt, das durch das Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz im Rahmen des Bundesprogramms Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft (BÖLN) gefördert wurde (FKZ 06OE125, FKZ 06OE149 und FKZ 06OE295).

Literatur

Landzettel C, Dreyer W (2011b): Herausarbeitung und Bewertung sortenspezifischer Eigenheiten
hinsichtlich Nitrat- und Stärkegehalte, Missbildungen und Beschädigungen. Landbaufor-
schung SH 348:55-60

Landzettel C, Dreyer W (2011c): Anbaumanagement auf den untersuchten Projektbetrieben. Landbau-
forschung SH 348: 31-42

Mahnke-Plesker S, Buchecker K, Westhuys F (2011): Zusammenhang zwischen Sensorik und Anbau-
parametern nach Ernte und Lagerung. Landbau-
forschung SH 348:111-128

Mayer J, Scheid S, Widmer F, Fliessbach A, Oberho
tzer HR (2010) How effective are 'Effective mi-
croorganisms (R) (EM)? Results from a field stu-

Kartoffeln. Stärke 30(9):313-315

Möller K, Kolbe H, Böhm H (2003): Handbuch Öko-
logischer Kartoffelbau. 1. Aufl., Leopoldsdorf:
Österreichischer Agrarverlag, 183 pp

SAS (2006): The GLMSELECT Procedure (Experi-
Download:
http://support.sas.com/rnd/app/da/glmselect.html

Schleuß U, Böhm H (2005) Reduzierung von Rhiz-
octonia solani im ökologischen Kartoffelanbau.
Kassel:kassel university press

Scholte K (1989): Effects of soil-borne Rhizoctonia
 solani Kühn on yield and quality of ten potato cul-
tivars. Potato Res. 32:367-376

Zellner M, Keil S, Benker M, Kleinhenz B, Bangem-
Praxiseinführung des Prognosesystems ÖKO-
SIMPHYT zur gezielten Bekämpfung der Kraut-
und Knollenfäule (Phytophthora infestans) im
ökologischen Kartoffelanbau mit reduzierten Kup-
féauwandmengen. BÖL-Abschlußbericht
Optimierung der ökologischen Kartoffelproduktion

Herwart Böhm (Hrsg.)
Bibliografische Information
der Deutschen Bibliothek

Johann Heinrich von Thünen-Institut

2011
Landbauforschung
vTI Agriculture and
Forestry Research

Johann Heinrich von Thünen-Institut
Bundesforschungsinstitut für
Ländliche Räume, Wald und Fischerei (vTI)
Bundesallee 50, D-38116 Braunschweig,
Germany

Die Verantwortung für die Inhalte liegt
bei den jeweiligen Verfassern bzw.
Verfasserinnen.

landbauforschung@vti.bund.de
www.vti.bund.de

Preis 12 €

ISSN 0376-0723
ISBN 978-3-86576-074-6
Abschlussbericht zum Verbundvorhaben

Optimierung der ökologischen Kartoffelproduktion

mit den Projekten

Aufarbeitung und Diskussion des aktuellen Wissens, Ableitung des weiteren Forschungsbedarfes unter Einbeziehung von Forschung, Beratung und Praxis (FKZ 06 OE 125: vTI, Institut für Ökologischen Landbau)

Entwicklung und Etablierung eines Benchmarkings zur Optimierung des heimischen Bio-Kartoffelanbaus (FKZ 06 OE 149: Bioland-Beratung GmbH)

Optimierung von Anbauparametern zur Steigerung der sensorischen Qualität von Öko-Kartoffeln (FKZ 06 OE 295: Marktgenossenschaft der Naturland-Bauern e.G.)

gefördert mit Mitteln des Bundesprogramms Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft BÖLN

Laufzeit und Berichtszeitraum: 01.05.2007 – 31.05.2011

Durchführende Institutionen

vTI
Institut für Ökologischen Landbau (OEL)
Tremhorst 32
23847 Westerau

Bioland Beratung
GmbH
Geschäftsstelle
Augsburg
Auf dem Kreuz 58
86152 Augsburg

Ökoring e.V.
Bahnhofstraße 15
27374 Visselhövede

Marktgenossenschaft der Naturland-Bauern e.G.
Rommerse 13
59510 Lippetal-Lippborg

Qualitäts-Management-Beratung für Öko-Produkte
Niddastraße 41
63329 Egelsbach

ttz Bremerhaven
Lengstraße 3
27572 Bremerhaven

Dr. Herwart Böhm
Tel.: 04539 8880 313
FAX: 04539 8880 140
E-Mail: herwart.boehm@vti.bund.de

Jan Plagge
Tel.: 0821 34680 131
FAX: 0821 34680 135
E-Mail: j.plagge@bioland-beratung.de

Wilfried Dreyer
Tel.: 04262 95940
FAX: 04262 959433
E-Mail: w.dreyer@oekoring.de

Franz Westhues (GF)
Tel.: 02527 9302 0
FAX: 02527 9302 20
E-Mail: mg@marktgenossenschaft.de

Dr. Sylvia
Mahnke-Plesker
Tel.: 06103 4866 33
FAX: 06103 4866 22
E-Mail: mahnke-plesker@t-online.de

Kirsten Buchecker
Tel.: 0471 309933
13
FAX: 0471 309933
12
E-Mail: Kbuchttz-bremerhaven.de