Ecosystem service provision by establishing temporal habitats in agricultural environments

Erja Huusela-Veistola¹, Eeva-Liisa Alanen², Terho Hyvönen¹, Mikko Kuussaari²

¹MTT Agrifood Research Finland, Jokioinen
²Finnish Environment Institute, Helsinki

25.5.2011
Background

• Intensification of arable production
 • specialisation, larger farm size, monoculture

• Decline in area of semi-natural grasslands and field margins
 ➢ Simplified the structure of agro-ecosystems
 ➢ Lower agrobiodiversity

• In several European countries, agri-environment support schemes are targeted to enhance biodiversity
How to diversify agricultural landscape?

- Wider field margins
- Wildflower strips
- More open field-forest ecotones
- Diverse crop rotations
- Semi-natural habitats
- Wider field margins
- Wildflower strips
Use of agricultural area in Finland 2010

<table>
<thead>
<tr>
<th>Use of area</th>
<th>1 000 ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>1012.2</td>
<td>44.2</td>
</tr>
<tr>
<td>(dominated by spring barley and oats)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasslands under 5 years</td>
<td>659.3</td>
<td>28.8</td>
</tr>
<tr>
<td>(inc. hay, silage, green fodder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pasture and seed production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasslands at least 5 years</td>
<td>33.0</td>
<td>1.4</td>
</tr>
<tr>
<td>(inc. natural meadows, pastures and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grazing grounds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fallows (inc green, stubble, bare</td>
<td>82.2</td>
<td>5.3</td>
</tr>
<tr>
<td>fallows)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental fallows</td>
<td>162.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Green manure</td>
<td>61.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Other crops</td>
<td>274.9</td>
<td>10.2</td>
</tr>
</tbody>
</table>

'Seminatural grasslands'

The Finnish Agri-Environment Scheme
- 92% of area (90% of farmers) under AES in 2010
- AES includes obligatory and optional support measures
 - mainly aimed to water protection (reducing nutrient run-off)
 - only a few measures targeted to enhance biodiversity
 - organic production (7%), management of traditional biotopes (1%),
 promoting biological and landscape diversity (0.5%)
Background and Objectives

- AES (agri-environment schemes): currently *not* sufficient to protect and enhance biodiversity in intensively cultivated landscapes

Aim: to study *establishment and management of temporal habitats in agroecosystems*

Develop old practical measures:
- Rotational fallows
- Long-term set-asides

Create new ones:
- Wildflower strips
- Field-forest ecotones
Ecosystem services and their measurement

Seed food production for farmland birds
Number of all seeds on soil top layer (~2-3 cm)

Insect food production for farmland birds
All insects caught by sweep net (or D-vac sampler)

Pollination
- honey bee (*Apis mellifera*)
- bumblebees (*Bombus* and *Psithyrus*)
- butterflies
- diurnal moths
 - found in transect counts

Natural enemies of pests
Ground-living arthropods by pitfall traps
Rotational fallows 2003-2006

Field experiment:

- type of set-aside: green, stubble
- duration: 1 or 2 years
- seed mixture:
 - ‘standard’
 (Festuca pratensis - Phleum pratense - Trifolium pratense)
 - ‘less competitive’
 (Agrostis capillaris - Festuca ovina)
- establishment
 - undersown, not undersown

row-column design (4 replicates, 8 treatments)
plot size 0.3 ha
Long-term set-aside 2003-2008

Field experiment:
• strip-plot design
• 4 replicates
• plot size 0.25 ha (50 m x 50 m)

Establishment: 3 seed mixtures

"Standard" "Less competitive" "Meadow plants"

Management: mowing / no m.
Long-term set-aside 2003-2008

Long-term set-aside 2003-2008

Wildflower strips 2007-2010

Field experiment:

- **Strips vs. matrix**
 - Wildflower strips
 - *Centaurea jacea*, *C.phrygia*, *Leucanthemum vulgare*, *Trifolium repens*, *Agrostis capillaris*
 - Monoculture strip (*C. jacea*)
 - Control (*Phalaris arundinacea*)

- **Placement of the strip**
 - Next to forest
 - Next to field margin
 - lengthwise/crosswise
 - In the middle of the field
Wildflower strips 2007-2010

Butterfly species

Moth species

Butterfly individuals

Moth individuals

1-6: wildflower strips
10-13: field margins

Alanen et al. (unpublished)
Idea: **Biodiversity zones in forests adjacent to fields**

- Open meadow like habitats increase biodiversity
- Income from forest logging can compensate for costs

Management

- Meadow strip (no trees) 5m

Control

- Light selection logging 20m
Field-forest ecotones 2009→

Butterflies

Alanen et al. (unpublished)
How to improve the effectiveness of agri-environment scheme?

- **Rotational fallows**
 - Stubble or seed of less competitive grasses best for pollinators
 - Less pests, more natural enemies in two-years fallows than in cereal fields

- **Long-term set-aside**
 - can maintain/enhance pollinator populations, if established using a suitable seed mixture (inc. nectar and pollen plants or less competitive grasses)
 - Old (> 5 year) set-asides important to butterflies and moths
 - The age of set-aside and vegetation structure are more important than seed mixture or plant species richness in supporting insect food for birds

- **Wildflower strips**
 - Placement of the strip next to forest

- **Field-forest ecotones**
 - Open meadow habitats increase bd of pollinators
How to support ecosystem services?

• **The promotion of each ecosystem service requires specific management**

• **Seed food production for farmland birds**
 - Short-term rotational fallows or new set-asides (specific seed-bearing crops)

• **Insect food production for farmland birds**
 - Set-asides of various ages, wildflower strips
 - Availability depends on vegetation height, density, heterogeneity

• **Pollination**
 - The long-term set-aside can maintain/enhance pollinator populations
 - Set-asides of various ages
 - social bees respond faster to set-aside (nectar and pollen)
 - butterflies and moths colonize slower (larval food plants)
 - Network of field margins important in the long run
 - Placement of wild-flower strips next to forest

• **Pest control by natural enemies**
 - Permanent grasslands, non-crop habitats
Conclusions

• *Ecosystem services can be promoted by establishing temporal habitats*

• *The most beneficial management varies between ecosystem services*

• *Area of temporal habitats supported by AES should be increased in agricultural landscape*
Thank you!