

Ecosystem service provision by establishing temporal habitats in agricultural environments

Erja Huusela-Veistola¹⁾, Eeva-Liisa Alanen²⁾, Terho Hyvönen¹⁾, Mikko Kuussaari²⁾

¹⁾MTT Agrifood Research Finland, Jokioinen

²⁾Finnish Environment Institute, Helsinki

25.5.2011 NJF436 Norway

Background

- Intensification of arable production
 - specialisation, larger farm size, monoculture
- Decline in area of semi-natural grasslands and field margins
 - Simplified the structure of agro-ecosystems
 - Lower agrobiodiversity

 In several European countries, agri-environment support schemes are targeted to enhance biodiversity

Changing areas of crops in Finland

Use of agricultural area in Finland 20105 MTT

Cereals (dominated by spring barley and oats)	1 000 ha 1012.2	% 44.2
Grasslands under 5 years (inc. hay, silage, green fodder pasture and seed production	659.3	28.8
Grasslands at least 5 years (inc. natural meadows, pastures and grazing grounds)	33.0	1.4
Fallows (inc green, stubble, bare fallows)	82.2	5.3
Environmental fallows	162.8	7.1
Green manure	61.9	2.7
Other crops	274.9	10.2

'seminatural grasslands'

The Finnish Agri-Environment Scheme

- 92% of area (90 % of farmers) under AES in 2010
- AES includes obligatory and optional support measures
 - mainly aimed to water protection (reducing nutrient run-off)
 - only a few measures targeted to enhance biodiversity
 - organic production (7%), management of traditional biotopes (1%), promoting biological and landscape diversity (0.5%)

Background and Objectives

 AES (agri-environment schemes): currently not sufficient to protect and enhance biodiversity in intensively cultivated landscapes

Aim: to study establishment and management of temporal habitats in agroecosystems

Develop old practical measures:

Rotational fallows Long-term set-asides

Create new ones:

Wildflower strips Field-forest ecotones

Ecosystem services and their measurement

Seed food production for farmland birds

Number of all seeds on soil top layer (~2-3 cm)

Insect food production for farmland birds
All insects caught by sweep net (or D-vac sampler)

Pollination

- honey bee (Apis mellifera)
- bumblebees (Bombus and Psithyrus)
- butterflies
- diurnal moths
 found in transect counts

Natural enemies of pests
Ground-living arthropods by pitfall traps

Rotational fallows 2003-2006

Field experiment:

- type of set-aside: green, stubble
- duration: 1 or 2 years
- seed mixture:
 - 'standard' (Festuca pratensis - Phleum pratense -Trifolium pratense)
 - 'less competitive'
 (Agrostis capillaris-Festuca ovina)
- establishment
 - undersown, not undersown

row-column design (4 replicates, 8 treatments) plot size 0.3 ha

Rotational fallows 2003-2006

Huusela-Veistola, E. & Hyvönen, T. 2006. Rotational fallows in support of functional biodiversity. *IOBC wprs Bulletin* 29: 61-64.

Long-term set-aside 2003-2008

Field experiment:

- strip-plot design
- 4 replicates
- plot size 0.25 ha (50 m x 50 m)

Establishment: 3 seed mixtures

Management: mowing / no m.

Long-term set-aside 2003-2008

Hyvönen, T. & Huusela-Veistola, E. 2011. Impact of seed mixture and mowing on food abundance for farmland birds in set-asides. Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.04.008

Long-term set-aside 2003-2008

Alanen, E-L, Hyvönen, T, Lindgren, S., Härmä, O. & Kuussaari, M. 2011. Differential responses of bumblebees and diurnal Lepidoptera to vegetation succession in long-term set-aside. J. Appl. Ecol. *in press*

Wildflower strips 2007-2010

Field experiment:

- Strips vs. matrix
 - Wildflower strips
 (Centaurea jacea, C.phrygia,
 Leucanthemum vulgare, Trifolium repens, Agrostis capillaris)
 - Monoculture strip (C. jacea)
 - Control (Phalaris arundinacea)

Placement of the strip

- Next to forest
- Next to field margin
 - lengthwise/crosswise
- In the middle of the field

Wildflower strips 2007-2010

Alanen et al. (unpublished)

Field-forest ecotones 2009→

- Idea: Biodiversity zones in forests adjacent to fields
 - Open meadow like habitats increase biodiversity
 - Income from forest logging can compensate bd costs

meadow strip (no trees) 5m

light selection logging 20 m

Field-forest ecotones 2009→

Butterflies

Rotational fallows

- Stubble or seed of less competitive grasses best for pollinators
- Less pests, more natural enemies in two-years fallows than in cereal fields

Long-term set-aside

- can maintain/enhance pollinator populations, if established using a suitable seed mixture (inc. nectar and pollen plants or less competitive grasses)
- Old (> 5 year) set-asides important to butterflies and moths
- The age of set-aside and vegetation structure are more important than seed mixture or plant species richness in supporting insect food for birds

Wildflower strips

Placement of the strip next to forest

Field-forest ecotones

Open meadow habitats increase bd of pollinators

How to support ecosystem services?

- **C**MTT
- The promotion of each ecosystem service requires specific management
- Seed food production for farmland birds
 - Short-term rotational fallows or new set-asides (specific seed-bearing crops)
- Insect food production for farmland birds
 - Set-asides of various ages, wildflower strips
 - Availability depends on vegetation height, density, heterogeneity
 - Pollination
 - The long-term set-aside can maintain/enhance pollinator populations
 - Set-asides of various ages
 - ✓ social bees respond faster to set-aside (nectar and pollen)
 - ✓ butterflies and moths colonize slower (larval food plants)
 - Network of field margins important in the long run
 - Placement of wild-flower strips next to forest
 - Pest control by natural enemies
 - Permanent grasslands, non-crop habitats

Conclusions

- Ecosystem services can be promoted by establishing temporal habitats
 - The most beneficial management varies between ecosystem services
 - Area of temporal habitats supported by AES should be increased in agricultural landscape

