KNOWLEDGE GENERATION AND EXCHANGE IN ORGANIC FOOD AND FARMING RESEARCH

Susanne Padel, Bruce Pearce, Eduardo Cuoco, Marco Schlüter, Urs Niggli, Otto Schmid, Helga Willer, Machtheld Huber, Niels Halberg, Cristina Micheloni
Outline

- Introduction to TP organics
- Why focus on knowledge?
- Four models of knowledge management
 - Linear to joint production of knowledge
 - What knowledge and what actors?
- Towards a European ecological knowledge systems
From vision to implementation

Meetings & Workshops
Organic Farmers
Processors & Retailers
Civil Society Organisations
Scientists
Consultations
SMEs
NGOs
TP Organic supporters
3 Themes & cross cutting issues

- Eco-functional intensification
- Food quality and health
- Climate change, water, bio-diversity, knowledge
- Empowerment of rural areas
- Principles of health, ecology, fairness and care

17 Key challenges
61 Topic suggestions

Organic food and farming represents a unique systems approach. This brings a coherent set of innovations:

- Further developing a participatory approach for knowledge generation and knowledge management
- First ideas for the FP8 research and collaboration
- Co-operation and networking
The main points of TP Organics with regards to the bio-economy concept and Action Plan

A bio-economy concept and action plan should have a much broader scope:

1. Capturing all the innovative potential of the whole agriculture and food sector (not just the life sciences) but also other agriculture and farm management research capacities, and the innovative potential of SMEs etc.
2. Delivering social benefits and public goods.
3. Maintaining and further developing the organic food and farming concept and identity to create a transparent relationship between producers and consumers.
Shaping the next EU Research Framework Programme

- Eco-functional intensification.
- The economics of high output/low external input farming.
- Health care schemes for livestock.
- Resilience and “sustainagility”.
- From farm diversity to food diversity to the health and wellbeing of citizens.
- Creating centres of innovation in farming communities.
Why focus on knowledge management?

- Knowledge drives innovation
- Important factors for competitiveness
- Also for agriculture
 - IAASTD report refers to AKST (Agricultural Knowledge, Science and Technology)
- And especially for organic
 - Low-input and organic agriculture replaces inputs with knowledge and management
What knowledge?

- Research knowledge (numbers/models)
 - Soils, plants, animals
 - Agro-ecology
 - Life-cycles and interactions
- Context knowledge
 - Markets and supply chains
 - Profitability and policy
- Experience (traditional knowledge)
 - In situ observation
 - Specific conditions
The linear model

The collaborative model

The feedback model

The joint production of knowledge model

Knowledge Producer

Knowledge User

After RELU (2007)
European examples of participatory research

- Participatory breeding networks (various)
- Coaching for strategic decision (DE)
- Stable schools reducing anti-biotic use (DK)
- Organic weeds project (UK)
- Financial and other benchmarking, such as Organic System Development Group (UK)
Why participatory research does not work?

• Who is in charge?
 – Neither farmers nor researchers/funders can set the agenda
• Multiple variables and multi-functional outputs
• Lack of management of expectations
 – Time input of farmers/stakeholders?
 – What data, what access?
 – Who has IP
• Lack of institutions fostering rigour in participatory and systems research
Actors in joint knowledge production

- Farmers
- Scientists
- Civil Society
- Control bodies
- Market partner
- Authorities
- Advisors
- Knowledge

TPorganics
Technology Platform
From the beginning to end

＞ Research needs (TP organics consultations)
＞ Setting research agenda
 • Designing the research activities
 • Experiments and implementation
✓ And finally: Putting it into practice

Time and money
When is participatory work successful?

😊 Stakeholders are satisfied
😊 Make full use of the results
😊 Stakeholders keep their independence and their sovereignty of knowledge and property rights
😊 Real improvements in sustainability
😊 Transferable findings
Diversity as an obstacle to knowledge sharing

- Multi-functionality a core strength of organic
- Diverse geo-graphical conditions
 - Soils and climate
 - Access to markets and inputs
- People diversity
 - Diversity of business and personal goals
 - Culture and traditions
- What knowledge is generic, what specific?
Conclusions

• “Technology-transfer” no longer applies
• Agriculture is a human activity
 – Humans interacting with specific environment
 – No one-size fits all research model
• Implications for researchers
 – Not research FOR farmers
 – But working WITH farmers (and other interest groups)
The challenge according to IAASTAD

How to manage effectively

• Collaborative generation of knowledge
 – among increasingly heterogeneous contributors

• Flow of information
 – among diverse public and private organizational arrangements

Step by step

if we know in which direction to go