Piglet mortality in organic herds

Prunier A1, Dippel S2, Bochicchio D3, Bourgoin A1, Goebel A4, Leeb C5, Lindgren K6, Wiberg S7, Sundrum A, Bonde M8

1INRA, UMR SENAH, Saint-Gilles, France, contact: armelie.prunier@rennes.inra.fr
2FLI, Celle, Germany; 3CRA, San Cesario sul Panaro (MO), Italy; 4University of Kassel, Germany; 5 BOKU, Vienna, Austria; 6SIAEE, Uppsala, Sweden; 7Swedish University of Agricultural Sciences, Skara, Sweden; 8FAS, Aarhus university, Denmark

Introduction

Productive performance of organic pig farms is lower compared to conventional farms, but only very few data exist. Better knowledge of the productivity of organic herds regarding litter size at birth, piglet losses around birth and during lactation, as well as housing and management conditions should help to identify critical points and hence to improve the situation.

Objectives

- Describe productive data, housing and management characteristics in 100 organic farms from 6 EU countries (Austria, Denmark, France, Italy, Germany, Sweden).
- Identify critical points for piglet mortality.

Methods

Interview of the farm manager
- Background, performances, management...

Observations on the farm
- Housing and animals

Farmers’ records
- Live born, still born, fostered (+ & -) and weaned piglets/litter
- During 3-11 months, starting between January and July 2008

Analyses
- No epidemiological analyses possible

Descriptive analyses
- Threshold of ≥ 10 litters/farm, records of stillborn
- 38 farms in 4 countries (France: 14, Germany: 12, Austria: 7, Sweden: 5) with a mean of 69 (10 to 713) litters/farm.

Classification of the farms according to their housing and management, using multiple correspondence analysis (MCA) and subsequent hierarchical classification, variables transformed in binary variables
- 49 “indoor” and 33 “outdoor” farms
- Comparison of the performances between farm types

Conclusions

- Detrimental influence of litter size at birth on piglet mortality (more competition & higher proportion of piglets with low birth weight), high standard deviation in litter size may exacerbate these problems.
- No clear difference between all indoor and O1 farms. O2 farms more “traditional”, lower performances.

Results

Table 1. Performances (38 farms)

<table>
<thead>
<tr>
<th></th>
<th>mLSB</th>
<th>SDLSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total litter size at birth</td>
<td>12.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Mean litter size at weaning</td>
<td>9.2</td>
<td>12</td>
</tr>
<tr>
<td>Percentage of losses, pLOSS</td>
<td>26.7</td>
<td>7.1</td>
</tr>
<tr>
<td>Duration of lactation, days</td>
<td>45.3</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Losses increased with mLSB (2.1 ± 0.7% additional loss per piglet, P < 0.01) and with sdLSB (3.9 ± 1.6% additional loss per unit of SDLS). mLSB was correlated with sdLSB (r = 0.44, P < 0.01).

Fig 1. MCA for indoor (left) and outdoor (right) farms

Fig 2. Littersize at weaning (from interviews) according to farm type

I1: bigger farms, batch farrowing, cross fostering, vaccination program, no outdoor run, large lying area, no group suckling, lameness rare
I2: cleaning and disinfection rare, small lying area, group suckling
I3: no batch farrowing, no cross fostering, fat sows, group suckling, no vaccination program
O1 vs O2: more batch farrowing & crossbred sows, larger herds, specific feed ratio during lactation

Acknowledgements

We thank all the farmers for their participation, as well as for providing access to their animals. The presented data are part of CORE organic project no. 1904 “Prevention of selected diseases and parasites in organic pig herds - by means of a HACCP based management and surveillance program (CorePig)”

EAAP 2010, 61st annual meeting of the European Association for Animal Production, Heraklion, Crete Island, Greece