

Bundesprogramm Ökologischer Landbau

Qualitätsoptimierung von Bio-Substraten für die Jungpflanzenanzucht im ökologischen Gemüseanbau unter besonderer Berücksichtigung der Praxisumsetzung des Torfersatzes durch fermentierte Holzfaser

Optimisation of quality of bio substrates for nursery plants under ecological vegetable production with special concern to transformation to praxis of peat ersatz by fermented wood fibre

FKZ: 020E200/F

Projektnehmer:

Forschungsring für Biologisch-Dynamische Wirtschaftsweise e.V. Bereich IBDF

Brandschneise 5, 64295 Darmstadt

Tel.: +49 6155 8421-0
Fax: +49 6155 8421-25
E-Mail: info@forschungsring.de
Internet: http:// www.forschungsring.de

Autoren:

König, Uli Johannes

Gefördert vom Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz im Rahmen des Bundesprogramms Ökologischer Landbau (BÖL)

Abschlussbericht zum Projekt:

Qualitätsoptimierung von Bio-Substraten für die Jungpflanzenanzucht im ökologischen Gemüseanbau unter besonderer Berücksichtigung der Praxisumsetzung des Torfersatzes durch fermentierte Holzfaser

Projektnummer: 02OE200 / F

Projektzeitraum: 21.6.2004 bis 30.9.2006

Projektverantwortlicher:

Dr. Uli Johannes König

Forschungsring für Biologisch-Dynamische Wirtschaftsweise e.V.

Bereich IBDF Brandschneise 5 64295 Darmstadt

Gefördert vom Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (BMVEL) im Rahmen des Bundesprogramms Ökologischer Landbau

und

SAG-Stiftung, Darmstadt

Abschlussbericht zum Projekt:

Qualitätsoptimierung von Bio-Substraten für die Jungpflanzenanzucht im ökologischen Gemüseanbau unter besonderer Berücksichtigung der Praxisumsetzung des Torfersatzes durch fermentierte Holzfaser

Projektnummer: 020E200 / F

Projektzeitraum: 21.6.2004 bis 30.9.2006

Gefördert vom

Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (BMVEL) im Rahmen des Bundesprogramms Ökologischer Landbau

und von der SAG-Stiftung Darmstadt

Danksagung:

Ohne die Unterstützung seitens der vielen Beteiligten hätte dieses Projekt nicht sein Ziel erreichen können. So darf ich mich herzlich bedanken

bei dem BMVEL und der SAG-Stiftung für die finanzielle Unterstützung,

bei Uli Natterer (Bioland Jungpflanzenbetrieb / Vaihingen) für die Unterstützung in Rat und Tat,

bei den Betrieben für die Mitarbeit bei den Praxisanbauversuchen, bei den Firmen Klasmann Deilmann / Geeste und Toresa / Söhlde für die großzügigen Materiallieferungen

sowie bei den weiteren Firmen und Personen für die Mitarbeit.

Verlag Lebendige Erde Brandschneise 1 64295 Darmstadt

ISBN

Herausgeber:

Forschungsring e.V. Brandschneise 5 D-64295 Darmstadt Tel.: 06155-8421-0 Fax: 06155-8421-25

www.ibdf.de

e-mail: info@ibdf.de

Gliederung

1	Ζl	JSAI	MMENFASSUNG	4
2	PΕ	ROB	LEMSTELLUNG UND ZIEL DES VORHABENS	6
3	S	ΓΑΝΙ	D DER DISKUSSION UND FORSCHUNG	6
4	VE	ERS	UCHSBESCHREIBUNGEN UND ERGEBNISSE	8
4	1.1	Ma	aterial und Methoden (allgemeiner Teil)	8
2	1.2	Qι	ualitätsoptimierung der Bio-Presserden	. 13
	4.	2.1	Test von mineralischen Zuschlagstoffen 1 (AV04-1)	. 13
	4.	2.2	Test von mineralischen Zuschlagstoffen 2 (SM04-3)	. 17
	4.	2.3	Stickstoff-Immobilisierungsversuch	. 17
	4.	2.4	Qualitätsuntersuchung von Substraten mittels des Kressetests	. 18
4	1.3	Va	ariation der Holzfaserherstellung und Fermentation	
		3.1	Erste Faserherstellung aus Saft-führendem Holz im Sommer, um das optimal Häckselgut herauszufinden; (SM04-1)	е
	4.	3.2	Zweite Faserherstellung aus Sommer-Baumschnitt (übliche Methode); Ansatz Anfang August 04 (SM04-2)	
	4.3	3.3	Dritte Faserherstellung aus Winterbaumschnitt; Ansatz März 05 (SM05-1)	. 23
4	1.4	Sι	ıbstratversuche am IBDF	
	4.4	4.1	Substratversuch 1; Mitte Dezember 04 - Mitte März 05 (AV04-2)	. 24
	4.4	4.2	Substratversuch 2; Juli 05 - August 05 (AV05-1)	. 27
	4.4	4.3	Substratversuch 3; November 05 - Frühjahr (AV05-2)	. 29
	4.4	4.4	Substratversuch 4; Juli 06-September 06 (AV06-1)	. 35
2	1.5	Pr	üfung der Substrate in Praxisbetrieben	.42
	4.	5.1	Test verschiedener Torf-reduzierter Substrate (PT04-1)	.42
	4.	5.2	Test verschiedener Torf-reduzierter Substrate (PT04-2)	.44
	4.	5.3	Vergleichsanbau torfreduzierter Substrate aus industrieller Produktion	. 46
4	1.6	Ur	nsetzung der Ergebnisse in der Praxis	.53
5	EF	RRE	ICHTE ZIELE - OFFENE FRAGEN	. 58
6	Lľ	TER	ATUR	. 59
7	ΙA	NHA	NG	.61
7	7.1		nhang A: Substratherstellung	
7	7.2		nhang B: Praxistests	
7	7.3	Ar	nhang C: Varianten und Ergebnisse der Versuche	.66

1 ZUSAMMENFASSUNG

Das Projekt steht in Folge mehrjähriger Versuchstätigkeit zur Erarbeitung eines Biosubstrates mit deutlich reduziertem Torfanteil. Es baut auf den Ergebnissen des Projektes "Entwicklung von Kriterien und Beurteilungsverfahren für die Herstellung und den Einsatz von Bio-Substraten für die Jungpflanzenanzucht im ökologischen Gemüseanbau unter besonderer Berücksichtigung der Weiterentwicklung der VO (EWG) 2092/91" (BLE – 02OE200) auf.

Das Projekt wurde in enger Kooperation mit der Praxis (Substrat-Herstellern, Bio-Jungpflanzenproduzenten und Feldgemüsebetrieben) durchgeführt. Ziel ist es, eine torfreduzierte Bio-Anzuchterde anzubieten, bei der stufenweise der Torfanteil durch fermentierte Holzfaser ersetzt wird.

Für Demonstrationszwecke und um spezielle Fragen im Zusammenhang der Substratherstellung zu klären, wurden verschiedene Anbauversuche und Tests durchgeführt:

- ➤ ein Substratscreening mit Industriepresserden verschiedener Hersteller im Vergleich mit eigenen torfreduzierten und –freien Mischungen;
- ➤ ein Press- und Anbauvergleich von torffreien Mischungen mit unterschiedlichen Mineralzuschlagstoffen im Vergleich zu einer Industrieerden;
- ➤ ein Versuch mit unterschiedlich aufgedüngten torffreien Mischungen zur Charakterisierung der Stickstoffverfügbarkeit;
- verschiedene geschlossene Kressetests zur Qualitätsprüfung von Komposten und Substratmischungen;
- Herstellung und Test alternativer Holzfasern aus Pappel- und Heckenschnitt;
- Praxistest von Substraten aus eigener wie auch großtechnischer Produktion in Jungpflanzenbetrieben;
- > Praxisanbauversuch im Feldgemüsebetrieben.

Die für die Versuche benötigten Mischungen aus fermentierter Holzfaser und Grünschnittkompost wurden in drei Größeneinheiten in Kleinkompostsilos zwischen 120 Liter und 2,2 m³ hergestellt. Darüber hinaus wurden die im Projekt entwickelten torfreduzierte Substrate auch im Betrieb Klasmann Deilmann hergestellt und für Praxisversuche zur Verfügung gestellt.

Aus den Versuchen kann gefolgert werden:

- Das Screening der Industriesubstrate erbrachte wiederum ein breites Spektrum an Wuchsleistungen. Totalausfällen, wie in früheren Jahren, gab es nicht.
- ➤ Mit torfreduzierten Substraten (bis maximal 50% Torf) kann ein ähnlicher Ertrag im Jungpflanzenbereich erzielt werden wie mit Industriesubstraten;
- ➤ In Versuchen wurde auch torffrei gearbeitet, was jedoch zu geringfügigen Ertragsminderungen führen kann;
- ➢ Die unterschiedlichen mineralischen Zuschlagsstoffe (Bentonit, Quarzmehl etc.) erbrachten keinen eindeutigen Vorteil. Eine Untersuchung der Qualitätseigenschaften konnte nicht durchgeführt werden. Hier besteht aber noch weiterer Untersuchungsbedarf;
- ➤ Der Feinheitsgrad der Holzfaser spielt für die Pressbarkeit der Substrate eine entscheidende Rolle, will man mit niedrigen Torfgehalten arbeiten. Je feiner die Faser, desto besser die Pressbarkeit; andererseits darf die Faser aber nicht zu fein sein, da dann das Porenvolumen der Erd-Bällchen zu gering wird;
- ➤ Wiederholte Praxisanbauversuche zeigten, dass auch mit reduzierten Torfanteilen von 50% und weniger gleichgute Ergebnisse erzielt werden können. In einzelnen

Versuchen zeigte sich auch eine geringfügige Überlegenheit der weniger torfhaltigen Substrate;

- ➤ Die logistischen Probleme, Holzfaser oder fertige Mischungen in die Praxisbetriebe zu bekommen, sind jedoch noch groß und wirken derzeit extrem bremsend auf die Verbreitung der neuen Substrate. Lediglich bei Großbetrieben ist die Verfügbarkeit problemlos zu gewährleisten.
- Regional erzeugte Holzfaser aus Heckenschnitt stellt eine Alternative für die Zukunft dar, wenn ein entsprechender Dienstleister gefunden werden kann.
- ➤ Ein weiterer Unsicherheitsfaktor ist die Deklaration der Substrate: hier fehlt nach wie vor eine saubere Bio-Zertifizierung, sodass mineralisch stabilisierte Substratkomponenten (z.B. Rindenkompost oder Holzfaser mit Harnstoff) oder konventionelle Herkünfte (z.B. Kokosfaser aus konventionellem Anbau) klar erkennbar sind.

2 PROBLEMSTELLUNG UND ZIEL DES VORHABENS

Die Jungflanzenanzucht für den ökologischen Landbau wird immer mehr in Spezialbetriebe ausgelagert. Diese Betriebe sind auf großtechnisch hergestellte Bio-Substrate angewiesen. Diese Substrate enthalten jedoch nach wie vor einen extrem hohen Anteil an Torf (bis zu 80%). Neben dem Imageproblem für den ökologischen Landbau, dass durch die Verwendung von Torf entsteht, gibt es auch Qualitätsfragen gegenüber dem Torf, aber auch anderen speziellen Komponenten (Kompost, organische Dünger, Torfersatzstoffe). Immer wieder wird bei Kulturen wie Chinakohl und Feldsalat von Ausfällen berichtet. Die Ursachen hierfür sind noch nicht ausreichend bekannt, doch besteht ein Zusammenhang mit der nicht ausreichenden Reife der Substrate. Dieses Problem gewinnt an Bedeutung, wenn berücksichtigt wird, dass in Zukunft in zunehmendem Maße auf Torfersatz im Bioanbau gesetzt werden wird.

Einige der Torfersatzstoffe sind zudem ähnlich kritisch zu beurteilen wie der Torf selbst. So entstammt die Kokosfaser in der Regel konventioneller Produktion aus Übersee. Sie ist ein idealer Rohstoff für Isolation und Polsterungen, die lange haltbar sein müssen, weniger jedoch für Substrate im kurzlebigen Gemüseanbau.

Andere Torfersatzstoffe wie zum Beispiel die Rindenhumussubstrate werden in der Regel durch Zusatz von Harnstoff hergestellt. Das gleiche gilt auch für die konventionelle Holzfaser. Dennoch werden diese Substrate teilweise im Bioanbau eingesetzt.

Das Projekt stellt eine Fortsetzung der begonnenen Arbeiten zum Thema Torfersatz bei Bioanzuchterden dar. Es wird speziell um die Qualitätsfragen erweitert.

Ziel des Projektes ist die

- Fortsetzung der begonnenen Einführung von Torfersatz in die Herstellungspraxis mit dem mittelfristigen Ziel eines weitgehenden Torfersatzes,
- Weiterentwicklung praxisreifer Biosubstrate in Zusammenarbeit mit den Substrat-Herstellern und Jungpflanzenproduzenten
- Verbesserung der Reifequalität der Substrate und ihrer Komponenten (Kompost, Holzfaser),
- Veranschaulichung dieser Reifequalität (analytisch und Pflanzentest)
- Lösungsansätze für in der Praxis auftretende Probleme bei der Verwendung von Biosubstraten zu erarbeiten,
- > Sowie Anpassung der Richtlinien (EU-Bio-VO und Bio-Anbauverbände).

Die konsequente Umsetzung der Ziele des Ökologischen Landbaus in der Praxis auch in Detailbereichen wie den Bio-Substraten ist ein wesentlicher Schritt in Richtung einer allgemeinen Ökologisierung der Landwirtschaft.

3 STAND DER DISKUSSION UND FORSCHUNG

Der intensive Torfeinsatz auch bei Bioanzuchterden wird in zunehmendem Maße auch von den Biobetrieben kritisch hinterfragt, lebt doch der Ökolandbau von dem Image, umweltfreundlich und die Arten bzw. Biotope schützend arbeiten zu wollen.

Die Notwendigkeit des Torfersatzes wird daher immer wieder diskutiert (Heinze 2001). Auch werden erste Alternativprodukte in Bio-Qualität angeboten (z.B. die Holzfaser Toresa; siehe www.Toresa.de).

Dem stehen aber die technischen wie auch ökonomischen Anforderungen an die verwendeten Substrate entgegen, die den Anbauer nach wie vor zu den "sicheren" torfhaltigen Substraten greifen lassen.

In der Vergangenheit sich mehrende Probleme bei der Anzucht bestimmter Kulturen (z.B. Chinakohl und Feldsalat) stellen aber die bisherige Praxis in Frage (pers. Mitteilung von Substratproduzenten und Anbauern). Insbesondere das kurzfristige Zusammenmischen der unterschiedlichen Komponenten der Substrate führt während der Anzucht zu unberechenbaren Veränderungen im Substrat selbst. Im Extremfall führt dies zu Fäulnis und ähnlichen Prozessen, die – wie in den eigenen Versuchen beobachtet – zu extremen Geruchsentwicklungen führen können.

Die Betroffenen wollen nur ungern den Schritt zu einer Reife-fördernden Lagerung der Substrate machen. Dies liegt nicht zuletzt auch daran, dass den Substratproduzenten der Sinn und Wert stabilisierender biologischer Prozesse nicht deutlich genug ist. Dies zu vermitteln, bleibt weiterhin Aufgabe des Ökologischen Landbaus.

Aber auch der Anbauer muss sich den andersartigen Substraten anpassen, wenn ihr Torfgehalt reduziert ist. Da dies oft nicht geschieht, führt dies zu mangelnden Erfolgen (Grantzau et al. 2003).

Durch das seit 2000 im IBDF laufende Projekt zur Entwicklung torfreduzierter Anzuchterden (König 2001-2003) hat hier aber eine Trendwende stattgefunden. Durch das Fermentieren der Holzfaser kann diese in ihren technischen Eigenschaften dem Torf teilweise angeglichen werden. Außerdem steigt ihre biologische Qualität, da sie durch die Rotteprozesse mit den anderen Substratkomponenten verbunden wird. Hier ist aber noch weitere Entwicklungsarbeit nötig.

Seit kurzem bieten die ersten Substratproduzenten torfreduzierte Bio-Substrate mit Holzfasern an. Letztere sind aber oft noch nicht in der erwähnten Form fermentiert. Dieser Schritt scheint den Substratherstellern noch zu unüberschaubar und aufwendig.

Eine ausführliche Literaturbeschreibung ist in dem ersten Projektbericht angeführt (König 2004).

Seit 1996 wird das Thema Bio-Anzuchterden durch den Antragsteller bearbeitet. In den ersten Jahren fanden Beratungsgespräche mit Substrat- und Jungpflanzenproduzenten und Vertretern des Demeter-Verbandes statt, um die Qualität der Substrate zu verbessern und den hohen Torfanteil zu reduzieren. Dabei entstanden im Auftrag des Forschungsringes für Biologisch-Dynamische Wirtschaftsweise Merkblätter, die die Herstellung der Komposte/Anzuchterden regelten (Forschungsring 2000).

Seit 1999 wurde mit den experimentellen Arbeiten begonnen, um für die Bio-Substratherstellung geeignete Torfersatzstoffe zu finden (Grüter 2001, König 2001, 2002b, 2003a.b.c).

Von Herbst 2002 bis Ende 2003 wurde die Praxiseinführung torfreduzierter Bioanzuchterden durch das Bundesprogramm Ökolandbau gefördert (König, 2004a). Ziel dabei war der schrittweise Ersatz des Torfes in den Substraten.

Die leitende Idee bei der Entwicklung der Substrate war die wiederholt gemachte Erfahrung, dass ein ausgereiftes, gut abgelagertes Substrat eine gleichbleibende hochwertige Qualität besitzt, und dass diese Substratqualität durch die im Bioanbau üblichen Lenkungsmöglichkeiten der Rotte ermöglicht wird. In diesen Fragenkomplex gehören auch die vielen Arbeiten zur Bodenfruchtbarkeit und organischen Düngung, die im IBDF in der Vergangenheit erarbeitet wurden (z.B. Abele 1987, Bachinger 1996, König 1996, Raupp 1999).

Inhaltliche Details der Vorarbeiten können dem ersten Abschlussbericht (König 2004a) entnommen werden.

4 VERSUCHSBESCHREIBUNGEN UND ERGEBNISSE

4.1 Material und Methoden (allgemeiner Teil)

Im folgenden sind die allgemeinen Aspekte der Methodenbeschreibung für die Versuche wiedergegeben. Diese werden durch die jeweiligen Beschreibungen der einzelnen Versuche ergänzt.

Industriesubstrate

Die zum Vergleich verwendeten Industriesubstrate waren i.d.R. Standardsubstrate aus der serienmäßigen Produktion. Verpackt waren sie palettenweise als Sackware. In dieser Form wurden sie beschattet und unter Folie geschützt im Freien gelagert. Von folgenden Firmen wurden Substrate für die Versuche verwendet.

- Firma Brill / Georgsdorf: "ECO Grond" (60% Torf)
- Firma Floragard / Oldenburg: "Bio-Presstopferde" (50% und 70% Torf)
- Firma Klasmann Deilmann/Geeste: "Bio-Potgrond" (50%, 70% und 80% Torf)
- Firma Tref / Moerdijk: "Bio 1 Potgrond" (50% und 70% Torf)

Substratherstellung

Die eigenen Mischungen wurden aus verschiedenen Holzfaser-Produkten, Grünschnittkompost und Schwarztorf hergestellt. Die Komponenten waren:

- ➤ Holzfaser "Eco-Toresa Holzfaser" der Firma Toresa/Söhlde ohne die üblichen Zumischungen (Harnstoff, Braunkohle). Toresa ist ein gröberes Material, das in einem mechanischen Aufschlussverfahren hergestellt wird. Das Schüttgewicht betrug 127 kg / m³ bei 44 % Wassergehalt, was 71 kg / m³ Trockensubstanz entspricht (Volumen nach EN 12580).
- ➤ Holzfaser "Torbo" der Firma Blieninger/Vilsbiburg ohne die üblichen Zumischungen. Torbo ist ein feines Material, das in einem thermischen Aufschlussverfahren hergestellt wird. Das Schüttgewicht betrug 60 kg / m³ bei 40 % Wassergehalt, was 36 kg / m³ Trockensubstanz entspricht (Volumen nach EN 12580).
- Grünschnitt-Kompost der Firma Klasmann Deilmann. Der Kompost war ca. 6-8 Monate ausgereift, auf 10 mm gesiebt und im Bigpack im IBDF bis zur Verwendung gelagert. Der Kompost wurde im Werk mit den biologisch-dynamischen Kompostpräparaten entsprechend den Demeter-Richtlinien präpariert. Dieser Kompost wird üblicherweise in die Bio-Substrate der Firma eingemischt. Der verfügbare N-Gehalt war gering (50 mg N-min/I) und konnte daher bei der Stickstoffbemessung vernachlässigt werden.
- Schwarztorf der Fa. Klasmann Deilmann / Geeste (Sackware).

Die weiteren verwendeten Zuschlagstoffe sind unter den jeweiligen Versuchsbeschreibungen aufgeführt.

Die Substratmischungen wurden erst mittels einer (umgerüsteten) Betonmischmaschine vorgemischt und anschließend durch einen Roxor Erdmischer homogen gelockert.

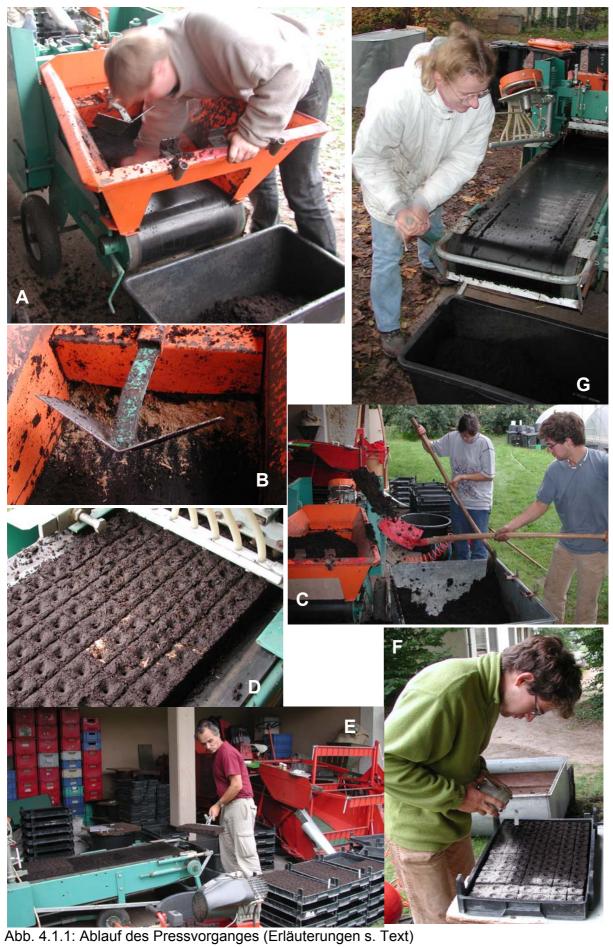
Gelagert wurden die Mischungen in Abhängigkeit von der Menge in folgenden Kompostsilos:

➤ Großsilos, welche aus Holzbrettern im Freiland gebaut waren, zum Erdreich hin mit Gehwegplatten abgedichtet und oben durch eine Wellkunststofftafel abgedeckt. Die Abmessungen waren: 105 cm Breite, 150 cm Tiefe, 145 cm Höhe. Das Volumen betrug maximal 2,28 m³. Die Silos konnten aber auch durch Trennwände weiter unterteilt werden. Bedingt durch die Bauart war eine gute Durchlüftung der

Substratmischungen gewährleistet. Andererseits waren die Silos den Temperaturschwankungen des Witterungsverlaufes ausgesetzt.

- Kleinsilos, die aus 220-Liter-Mülltonnen hergestellt waren. Die Tonnen standen im Freien. Die Durchlüftung war bauartbedingt gering, weshalb die Tonnen häufiger umgesetzt wurden. Durch die Aufstellung im Freien waren die Temperaturschwankungen relativ hoch.
- ➤ Kleinsilos, die aus 120-Liter-Mülltonnen hergestellt waren. Die Tonnen standen in einer Garage. Die Durchlüftung war bauartbedingt gering, weshalb die Tonnen häufiger umgesetzt wurden. Im Frühling 2003 wurde eine Zwangsbelüftung in die Tonnen eingebaut, die mehrmals pro Woche angestellt wurde. Durch die Aufstellung in einem geschlossenen Raum waren die Temperaturschwankungen gering.

Pressvorgang


Die Substrate wurden unmittelbar vor dem Pressen auf einen optimalen Wassergehalt eingestellt. Dies erfolgte praxisüblich durch Handprobe und Pressversuche.

Als Pressmaschine diente eine Erdtopfmaschine "Perfekt" der Firma Unger / Dossenheim (Abbildung 4.1.1). Die Maschine war für die Versuchspressungen umgebaut, um einen raschen Wechsel zwischen den Substraten zu ermöglichen. Zum einen war in den Vorratsbehälter eine Reinigungsklappe eingebaut (A), zum anderen war an der vorderen Umlenkrolle des Förderbandes ein Reinigungsschieber angebracht worden (G). So war es möglich, ohne die Maschine leer laufen zu lassen, kontinuierlich verschiedene Substrate hintereinander pressen zu können. Als Trennmarkierung zwischen den Chargen diente rohe Holzfaser (B). Damit konnte auch die Vermischung zwischen den Substraten auf etwa 10 Reihen eingeengt werden (D). Es wurde ein 7-reihiges Presswerkzeug verwendet mit einer zusätzlichen Pikierstiftschiene und einer Arbeitsbreite von 32 cm.

Die Erdpressballen wurden von Hand mit der zur Maschine gehörenden Spezialgabel in die Anzuchtkisten umgepackt (E). Die Kisten hatten eine Größe von 34 x 55 x 5 cm. Sie wurden mit 98 Erdpressballen befüllt. Die mittlere Größe der Ballen war 45 x 37 x 45 mm (= 75 cm³).

Die Kisten wurden von Hand eingesät und anschließend mit Sand abgestreut (F). Danach wurden sie mit einer geringen Wassergabe angefeuchtet und in einen Klimaraum bei >95% rel. Luftfeuchte und ca. 20 °C zum keimen aufgestellt.

Nach ca. zwei Tagen wurden die Kisten in ein Foliengewächshaus auf Rolltischwagen umgestellt. Hierdurch war es möglich, in Abhängigkeit von der Außentemperatur den Versuch in den vorgelagerten Vegetationskäfig zu fahren. Während der Frostperiode war der Folientunnel mittels einer 9 kW Gewächshausheizung beheizbar.

Analytik

Die Substratuntersuchungen wurden nach BGK (1998) durchgeführt. Es werden hier für alle Versuche die Methoden dargestellt:

Der *pH-Wert* wurde elektrometrisch in einer Suspension der Substratfrischsubstanz in 0,01 molarer CaCl2-Lösung (Verhältnis 1:10) bestimmt.

Die *Leitfähigkeit* wurde im 1:10 Wasser-Extrakt der Substratfrischsubstanz mittels Elektrode bestimmt.

Der Salzgehalt wurde aus der Leitfähigkeit mittels Faktor und Rohdichte berechnet.

Die *Rohdichte* wurde im 1-Liter Messzylinder nach 10-maligem Fall aus 10 cm Höhe gemessen.

Ammonium und **Nitrat** wurden in 0,0125 molarer CAL-Lösung der Substratfrischsubstanz mittels des Kjeldahlaufschlusses bestimmt.

Der Gehalt an **Gesamt-Stickstoff** wurde durch den Kjeldahlaufschluss der Trockensubstanz erfasst.

Die löslichen Gehalte an *Phosphor (Gesamt-P)* und *Kalium (Gesamt-K)* wurden nach Extraktion der Substratfrischsubstanz mit einer auf pH 4,1 gepufferten CAL-Lösung aus Calciumacetat, Calciumlaktat und Essigsäure im Verhältnis 1:10 bestimmt. Im Extrakt wurde Phosphor spektralphotometrisch und Kalium flammenphotometrisch gemessen.

Die *Trockensubstanz* wurde gravimetrisch nach Trocknung bei 105 °C bestimmt.

Die **aschefreie Trockensubstanz** ist die Trockensubstanz abzüglich des Veraschungsrückstandes (bei 550 °C).

Für die Untersuchung der *Wiederbefeuchtung* der Substrate wurde ein Testverfahren entwickelt, das eine abgestufte Erfassung der Wasseraufnahme in Abhängigkeit von der Zeit ermöglicht.

9 Erdpressbällchen einer Variante wurden in ein Kunststoff-Siebbehälter gelegt und bei 40 °C auf eine Restfeuchte von ca. 10 % der zuvor bestimmten Feldkapazität eingestellt. Bis zur Durchführung des Wiederbefeuchtungstests wurden die Proben durch eine Plastiktüte an weiterer Verdunstung gehindert.

Im ersten Befeuchtungsschritt wurden mittels einer Brause 500 ml Wasser auf die beschriebene Einheit aus 20 cm Höhe beregnet. Nach einer Abtropfzeit von 5 Minuten wurde das Gewicht bestimmt.

Im zweiten Schritt wurden die Einheiten für 5 Minuten im Wasserbad untergetaucht, anschließend 5 Minuten abgetropft und wiederum gewogen. Die weiteren Zeitintervalle sind der folgenden Aufstellung zu entnehmen:

Tab. 4.1.1: Zeitablauf des Wiederbefeuchtungstests (Zeitangaben in Stunden)

	0:00	0:10	0:20	0:35	1:00	2:00	4:00	7:00	31:00
Befeuchtungszeit	gießen	0:05	0:10	0:20	0:55	1:55	2:55	23:55	47:55
Abtropfzeit	0:05	0:05	0:05	0:05	0:05	0:05	0:05	0:05	0:05
Messzeitpunkt	0:10	0:20	0:35	1:00	2:00	4:00	7:00	31:00	79:00

Anschließend an die letzte Messung wurde das Trockengewicht der Proben bestimmt.

Der *geschlossene Kressetest* wurde nach Fuchs und Bieri (2000) modifiziert. Feuchte gesiebte Erde wurde in ein 380 ml Glas eingewogen und mittels eines Stempels angedrückt.

Auf die Oberfläche wurden 0,5 g Kressesamen (Sorte "Einfache Gartenkresse" / Bingenheim) gleichmäßig verteilt und mit dem Stempel leicht in die Erde gedrückt. Die Oberfläche wurde mit Sand abgestreut und mit 5 ml Wasser angefeuchtet. Anschließend wurde ein zweites Glas Überkopf auf das erste gestellt und mit Tesafilm luftdicht mit diesem verbunden.

Je nach Versuchsumfang wurde mit 3-5 Wiederholungen gearbeitet. Der Versuch wurde in einem klimatisierten Raum unter Kunstlicht (500-W-HQL-Lampen) aufgestellt. Die Raumtemperatur betrug mindestens 20 °C.

Nach einer Wachstumszeit von ca. 1 Woche wurde die Kresse geerntet und die Frischmasse bzw. aschefreie Abb. 4.1.2: Geschlossener Kressetest Trockenmasse bestimmt.

Die Bestandesentwicklung wurde zu bestimmten Entwicklungsstadien fotografisch dokumentiert (Digitalkamera Nikon Coolpix 950).

Die statistische Auswertung erfolgte mit dem Programm Statgraphics, die Varianzanalysen wurden mittels LSD-Test geprüft.

4.2 Qualitätsoptimierung der Bio-Presserden

Eine erste Fragestellung galt der Optimierung der Bio-Presserden. Dabei wurden einerseits verschiedene Zuschlagstoffe untersucht, andererseits aber auch der Herstellungsprozess der Substrate, insbesondere der Holzfaser experimentell variiert.

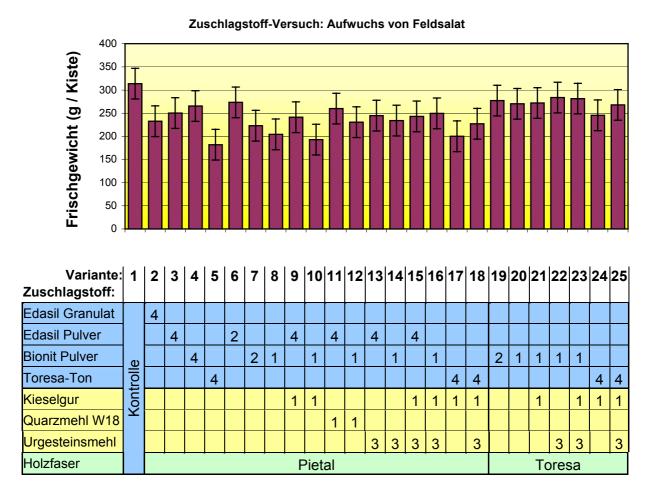
4.2.1 Test von mineralischen Zuschlagstoffen 1 (AV04-1)

Hier stand die Frage im Vordergrund, ob mineralische Zuschlagstoffe wie zum Beispiel Gesteins- oder Tonmehle eine positive Auswirkung auf die Qualität der Substrate haben. Bereits im ersten Projektzeitraum wurden Mischungen hergestellt, die experimentell untersucht werden sollten. Durch die Verzögerung des Projektbeginns waren diese Substrate dann jedoch in ihrer Rotte weiter fortgeschritten, als dies unter normalen Bedingungen der Fall gewesen wäre.

Nach genauer Beurteilung der vorhandenen ein Jahr alten Ansätze von 24 Mischungen mit verschiedenen Zuschlagstoffen wurden diese als brauchbar beurteilt. Auch hätte die Beschaffung von neuer Bio-Holzfaser einige Wochen Vorlauf gehabt, bis neue gleichwertige Ansätze gemacht werden konnten. Daher wurden die vorhandenen 24 Mischungen wie ursprünglich vorgesehen in einem Aussaatversuch geprüft und gegen ein Standardsubstrat (Bio-Potgrond von Klasmann Deilmann) verglichen.

Beschreibung der Substratkomponenten:

Als Tone wurden vier verschiedene Fabrikate verglichen:


- > das "Edasil Granulat", ein Bentonit mit einer großen aktiven Oberfläche,
- das "Edasil Pulver", derselbe Ton, jedoch fein vermahlen,
- das "Bionit Pulver", ebenfalls ein Bentonit-Ton, der jedoch mittels Soda weiter aufgeschlossen wurde, so dass seine Oberfläche gegenüber dem Edasil um ein Mehrfaches vergrößert wurde,
- > so wie ein mariner Lagerstättenton der Firma Toresa.

Als weitere Zuschlagstoffe wurden verschiedene Gesteinsmehle verglichen. Zum einen wurde ein Kieselgurmehl ebenfalls der Firma Toresa untersucht. Des weiteren ein Quarzmehl mit der Körnung W 18,und schließlich das Urgesteinsmehl der Firma Lavaunion. Die Zuschlagstoffe wurden zwei unterschiedlichen Holzfasertypen zu gemischt: der thermisch aufgeschlossenen Faser "Pietal" und der mechanisch aufgeschlossenen Faser "Toresa". Beide Fasern waren mit 20% Grünschnittkompost und 5 kg Hornmehl pro Kubikmeter versetzt. Die genaue Zusammensetzung der einzelnen Varianten kann der Tabelle von Abbildung 4.2.1 entnommen werden. Als Kontrolle diente der Biopotgrond der Firma Klasmann Deilmann.

Versuchsaufbau:

Gepresst wurde mit der Unger "Perfekt" Erdpresstopfmaschine des IBDF (4x4x4 cm Ballengröße). Es wurden die Substrate zum Zeitpunkt des Versuchsbeginns analysiert (TS-Gehalt, N-min Ammonium/Nitrat im CaCl2-Extrakt, Schüttdichte nach EN).

Ausgesät wurde Feldsalat (Sorte Vit) mit 5-7 Samen pro Pflanzstelle. Die Pflanzen wurden im Gewächshaus des IBDF mit 4 Wiederholungen kultiviert. Von einem Teil der Pflanzen (3 Kisten) wurde der Aufwuchs bestimmt (FG, TG, Anzahl Pflanzen / Kiste). Eine weitere Wiederholung wurde ausgepflanzt (siehe unten).

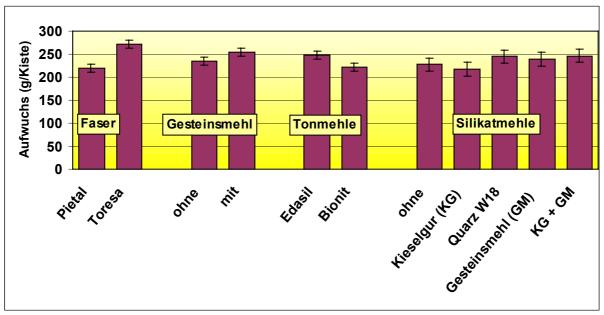


Abb.4.2.1: Versuch mit Zuschlagstoffen: Aufwuchs von Feldsalat-Jungpflanzen auf Substraten mit unterschiedlichen Zuschlagstoffen; Mengenangaben in Kilogramm pro Kubikmeter

Im Folgenden ist der zeitliche Ablauf des Versuches wiedergegeben:

17.-24.9.03 Mischungen angesetzt
24.9.04 Pressen der Erden
27.9.04 Aussaat
4.10.04 Umstellen in Gewächshaus
11.11.04 Auspflanzung Heydenmühle
13.-17.12.04 Ernte Anzuchtkisten Feldsalat
Ende Feb. 05 Ernte Heydenmühle

Ergebnisse:

Aufgrund der langen Fermentationszeit von zirka einem Jahr war die Holzfaser stark verrottet. Die Substrate hatten daher eine hohe EN-Dichte (siehe Tab. A-1 im Anhang). Diese war circa 50% höher wie zum Zeitpunkt des Ansatzes im Herbst.

Die Stickstoffverfügbarkeit in den verschiedenen Varianten war über den gesamten Versuchszeitraum ausreichend. Vergleicht man die vorhandenen Restwerte an Nmin zum Zeitpunkt der Ernte mit den Ausgangswerten zum Zeitpunkt der Aussaat, so hat sich bei den meisten Varianten der Pegel des verfügbaren Stickstoffs während der Vegetationszeit kaum verändert. Die drei Substratgruppen unterscheiden sich etwas im Niveau des Stickstoffgehaltes: das Kontrollsubstrat (Variante 1; Biopotgrond) zeigt das niedrigste Niveau, die Substrate auf der Basis der Holzfaser Pietal zeigen das höchste Niveau, die Substrate auf der Basis der Holzfaser Toresa lagen dazwischen.

Die Erträge der unterschiedlichen Varianten zeigten ein recht heterogenes Bild. Tendenziell wichen alle Substrate von der Kontrolle mit einer geringen Ertragsdepression ab, wobei die Ursache neben einer Strukturschwäche durch die Überlagerung der Erden auch in einer unterschiedlichen Nährstoffverfügbarkeit liegen kann. Der Vergleich der verschiedenen Varianten untereinander war jedoch ohne Einschränkungen möglich.

Den größten Einfluss hatte die Holzfaserherkunft: Toresa lag im Schnitt mit über 20% Mehrertrag über Pietal. Eine Ursache hierfür kann in der gröberen Struktur der Toresa Faser liegen, die für eine bessere Luftführung der strukturschwachen Erden sorgte. Bis auf eine Variante (Nr. 24) ließen sich die Varianten auf der Basis von Toresa nicht von der Kontrolle unterscheiden.

Ein Vergleich der Tone lässt deutliche Tendenzen erkennen: Der Toresa-Ton schloss i.d.R. negativ ab; er führte wohl lediglich zu einer Verdichtung des Substrates ohne die erhofften positiven Wirkungen auf das Bodenleben und den Bodenchemismus ausüben zu können. Der Vergleich von Edasil zu Bionit – beides Lagerstättenbentonite, wobei der letztere unter Zusatz von Soda aufgeschlossen wurde – fiel eindeutig zugunsten des üblicherweise verwendeten Edasil-Tones aus. Die Hauptwirkung der Tone über alle vergleichbaren Varianten zeigten einen signifikanten Unterschied. Anzumerken wäre, dass das Edasil-Granulat tendenziell ebenfalls abfällt. Vom technischen Gesichtspunkt betrachtet stellen die Granulate ein Risiko dar, da die kleinen plastischen Tonaggregate die Presswerkzeuge der Erdepresstopfmaschinen verkleben können.

Die einzelnen Silikatmehle zeigten keine eindeutige Wirkung auf den Ertrag. Lediglich die Hauptwirkung der Gesteinsmehlvarianten führte zu einer signifikanten Verbesserung des Aufwuchses.

Abb.4.2.2: Versuch Betrieb Heydenmühle

Praxistest (PV04-3):

Ein weiterer Teil der Pflanzen (je eine Kiste) konnte in einer Gärtnerei (Heydenmühle, Otzberg) unter praxisüblichen Bedingungen bis zur Ernte weiterkultiviert werden. Hier wurde lediglich der Ertrag durch Wägung bestimmt (siehe Abbildung 4.2.3). Da nur eine Kiste pro Variante ausgepflanzt wurde, war keine statistische Auswertung der Ergebnisse möglich. Die Streuungen der Werte und damit eine teilweise Entkopplung dieser von den Jungpflanzen-Erträgen stärkt die Vermutung, dass die Unterschiede des Gewächshauses (Boden, Temperaturgradient, Bewässerung etc.) maßgebend waren, und zum Teil die Qualitäten der Substrate überlagerten. Auffallend ist jedoch, dass die Kontrolle im Praxisanbau einen mittleren Ertrag ergab, der teilweise von den Varianten sogar übertroffen wurde.

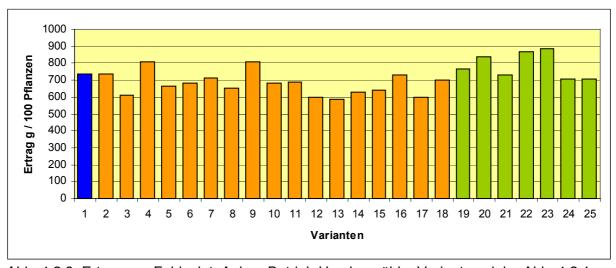


Abb. 4.2.3: Ertrag von Feldsalat, Anbau Betrieb Heydenmühle; Varianten siehe Abb. 4.2.1

Zusammenfassend muss angemerkt werden, dass mögliche positive Eigenschaften der Zuschläge durch den Verlust an Struktur durch die Überlagerung der Substrate wieder aufgehoben wurden. Auch dürften die Mengen an Zuschlägen in der Summe zu hoch gewesen sein (bis zu 8 kg/m³ EN-Volumen), berücksichtigt man den geringen Trockengewichtanteil der Holzfaser, der in einem Kubikmeter enthalten ist (ca. 50-75 kg).

4.2.2 Test von mineralischen Zuschlagstoffen 2 (SM04-3)

Um die zuvor beschriebenen Effekte der mineralischen Zuschlagstoffe nochmals mit praxisüblichen Substrate zu überprüfen, wurde ein zweiter Fermentationsversuch angelegt. Da die Substrate auch unter Praxisbedingungen auf der großen Unger Presstopfmaschine getestet werden sollten, wurde diesmal mit größeren Mengen in Großsilos (circa 1 m³) gearbeitet.

Varianten und Substratkomponenten:

- 1 Toresa m. 20% Grünschnittkompost; ohne Zuschläge
- 2 Toresa wie 1; 5 kg/m³ Edasil und 5 kg/m³ Gesteinsmehl
- 3 Toresa wie 1; 1 kg/m³ Bionit und 5 kg/m³ Gesteinsmehl

<u>Untersuchungsprogramm:</u>

Die Holzfaser wurde mit 20% reifem abgesiebten Grünschnittkompost und 5 kg/m³ Hornmehl in Großsilos zu 1000 Liter angesetzt und 1-2 monatlich umgesetzt. Untersucht wurden die Erden auf pH, Salzgehalt und N-min; außerdem wurde die Roh- bzw. EN-Dichte bestimmt.

Versuche:

Die Ansätze wurden im Praxistest mit Feldsalat im Betrieb Natterer auf der großen Unger Presstopfmaschine gepresst und angezogen. Anschließend wurden sie im Betrieb Willmann/Vaihingen im Gewächshaus ausgepflanzt (siehe Kapitel 4.5.2: Versuch PT04-2). Außerdem wurden sie ihm IBDF mittels der Unger-Perfekt gepresst und mit Feldsalat im Gewächshaus getestet (siehe Kapitel 4.4.1: Versuch AV04-2).

Im Folgenden ist der zeitliche Ablauf der Versuche wiedergegeben:

```
6.-12.8.04
             Mischungen angesetzt
Versuch AV04-2:
23.12.04
             Pressen und Aussaat der Erden im IBDF
18.-19.3.05
             Ernte des Feldsalat im IBDF
Versuch PT04-2:
15.12.04
             Pressen und Aussaat der Erden im Betrieb Natterer
24.2.05
             Auspflanzung im Betrieb Willmann
25.2.05
             Probeernte der Feldsalat-Kisten von Natterer
             Ernte im Betrieb Willmann
April 05
```

4.2.3 Stickstoff-Immobilisierungsversuch

Holzfaser war in früheren Jahren nicht zuletzt wegen seiner starken Stickstofffestlegung in die Kritik geraten. Um hier zu klären wie sich die fermentierte Holzfaser diesbezüglich verhält wurde ein Stickstoffimmobilisierungsversuch angelegt. Es wurden vier Substrate verglichen, drei unterschiedliche fermentierte Holzfasern und reiner Schwarztorf. Die Holzfasern unterschieden sich in der Herstellung, indem sie eher trocken, mäßig feucht oder feucht gehalten wurde.

Aufgedüngt wurden die Substrate mit Ammonsalpeter (1g N/Liter Boden) und zum Vergleich bei der ersten und letzten Messung je eine zusätzliche Variante mit Hornmehl (10kg/m³). Es wurden jeweils 100 g Substrat in ein 1 l Weckglas gefüllt und bei 25°C im Brutschrank bebrütet. An jedem Termin wurden zwei Wiederholungen analysiert. Die Substrate wurden auf 80% Feuchte eingestellt. Gemessen wurde zu Beginn, nach 7,17, 28 und 56 Tagen.

Varianten:

Schwarztorf
Faseransatz "trocken"
Faseransatz "mäßig feucht"
Faseransatz "feucht"

Die Ergebnisse sind in Abbildung 4.2.4 dargestellt (s. a. Anhang, Tab. A-2). In der linken Abbildung ist der Verlauf nach Zugabe von Ammonsalpeter dargestellt. Bei den drei Holzfaser-Varianten fallen die Ammonium-Kurven rasch ab. Anders ist es beim Schwarztorf. Hier steigt sie bis zum 28. Tag an um dann abzusinken. Dafür findet hier nur eine geringe Nitratbildung statt. Die Holzfaser Varianten zeigen hingegen eine Nitratbildung in üblicher Höhe. Am 56. Tag erfolgt in zwei Varianten sogar noch ein deutlicher Anstieg auf das Doppelte.

Der Verlauf bei der Hornmehl-Aufdüngung ist ähnlich. Die Mineralisierung des Hornmehls führt auch hier zu einem leichten Überschuss an Nitrat im Substrat. Lediglich der Schwarztorf fällt hier mit einer andersartigen Dynamik heraus. Bei ihm reichert sich Ammonium bis zum 56. Tag an, ohne dass es in Nitrat umgewandelt wird. Dieses Phänomen veranschaulicht die Einseitigkeit des Schwarztorfes, dem die Lebendigkeit fehlt, die notwendig ist, um das Hornmehl vollständig umzusetzen.

Aus dem Test kann daher gefolgert werden, dass bei einer ausreichenden Aufdüngung auch mit organischen Düngern eine genügende Stickstoffstabilität von fermentierter Holzfaser besteht. Schwarztorf hingegen zeigt seine lebensfremde Eigenschaft, indem er nicht ausreichend das Hornmehl mineralisieren kann.

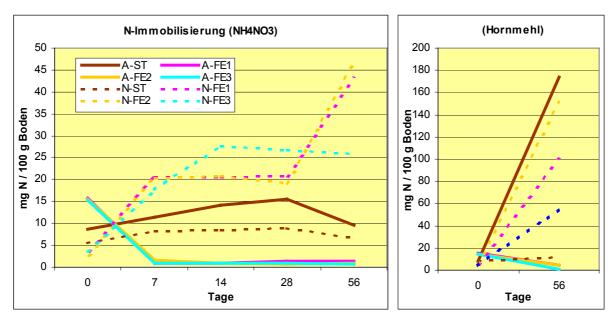


Abb. 4.2.4: Immobilisierungsversuch: Aufdüngung mit Ammonsalpeter (links) beziehungsweise Hornmehl (rechts); A=Ammonium, N=Nitrat; ST=Schwarztorf; FE=Feuchterde 1-3

4.2.4 Qualitätsuntersuchung von Substraten mittels des Kressetests

Mehrfach wurden Substrate auf ihre Qualität hin untersucht, bevor sie in größeren Anbau versuchen verwendet wurden. Hierfür fand der geschlossene Kressetest Anwendung, der auch nur geringfügige Probleme, die ein Substrat mitbringen würde, sofort zeichnet.

Die im Rahmen der jeweiligen Versuche durchgeführten Kressetests sind im Zusammenhang mit diesen Versuchen dargestellt. Hier sollen lediglich spezielle Untersuchungen angeführt werden.

Immer wieder traten in den Kressetests größere Steuerungen auf, für die keine Ursachen zu finden waren. Es lag daher die Vermutung nahe das in der Feuchteführung der Substrate eine Ursache liegen könnte. Es wurde daher in einem Versuch die richtige Einstellung der Feuchte überprüft. Hierzu wurden die Substrate mit steigender Menge Wasser versorgt (Feldtrocken, 50, 100, 150 ml Wasser pro Glas). Außerdem wurde überprüft, wie der Einfluss der Befeuchtung der Kressesamen ist. Diese wurden, nachdem sie mit Sand abgedeckt waren, viermal beziehungsweise zehnmal mit einer Spritze besprüht. Die Ergebnisse dieses Versuches sind in Abbildung 4.2.5 dargestellt (s. a. Anhang, Tab. A-3).

Wie erkannt werden kann für nur die hohe Wassergrabe zu einer Verminderung des Aufwuchses an Kresse. Bei dieser Variante war aber auch die Feldkapazität längst überschritten so dass Staunässe in dem Glas herrschte. Auch ein zu kräftiges Besprühen mit Wasser führte zu einer Ertragsminderung. Lediglich bei trockener werden Substrat war ein stärkeres Besprühen günstig.

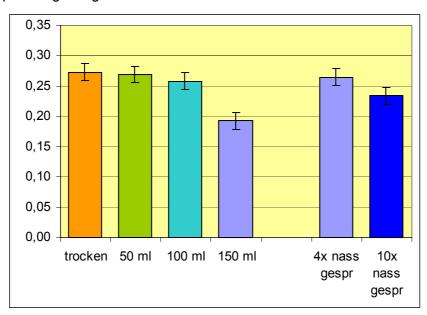
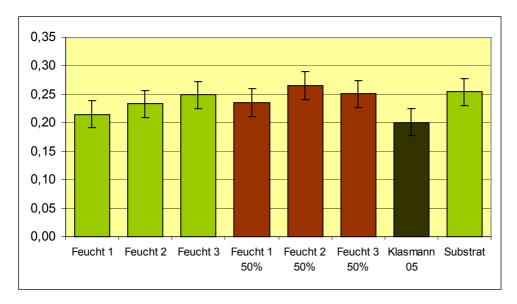



Abb. 4.2.5: Kressetest1: Einstellen der optimalen Feuchte; Aufwuchs der Kresse in Gramm aschefreie Trockenmasse pro Glas; Erläuterungen siehe Text

Kressetest 2

In einem zweiten Test wurden dann verschiedene Holzfaser Mischungen mit reduzierten Torfanteilen getestet. Es handelte sich dabei um die gleichen Substrate, die auch in dem Stickstoffimmobilisierungsversuch zum Einsatz kamen. Neben den reinen torffreien Substraten wurden auch Mischungen mit 50% Torf untersucht. Hinzukam ein weiteres Substrat aus verschiedenen Holzfasermischungen sowie die Vergleichserde Biopotgrond von Klasmann-Deilmann mit 70% Torfanteil (s. a. Anhang, Tab. A-4).

Alle Substrate lagen in ihrem Aufwuchs auf einem ähnlichen Niveau wie das Vergleichsubstrat von Klasmann, eher tendenziell noch höher. Die unterschiedliche Fermentation der Holzfaser je nach Feuchte zeigte somit keine Differenzierung im Kressetest.

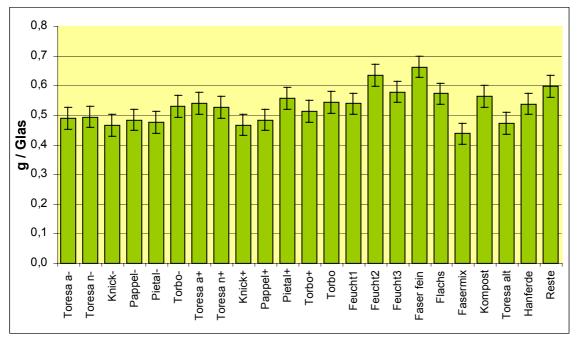


Abb. 4.2.6: Kressetest 2: Vergleich unterschiedlicher Holzfasermischungen (mit reduzierten Torfanteile); Aufwuchs von Kresse (Aschefreie Trockensubstanz)

Kressetest 3

In einem dritten Test sollten eine Reihe von Substraten verglichen werden, die am IBDF hergestellt worden waren und für weitere Versuche zur Verfügung standen. Es handelte sich einerseits um die üblichen Holzfaser-Mischungen aus Toresa, Pietal, Torbo oder eigener Herstellung, aber auch um Sondersubstrate wie ein Substrat aus Flachsschäben, Hanfstroh und andere Komposte (s. a. Anhang, Tab. A-5).

Auch in diesem Test war ein gutes Wachstum zu erzielen, mit geringen positiven wie auch negativen Abweichungen, die jedoch für die Praxis wenig Bedeutung haben. Auffallend war, dass die Hanferde nach mehrjähriger Kompostierung ein positives Pflanzenwachstum zeigt.

Abb. 4.2.7: Kressetest 3: Vergleich unterschiedlicher Holzfasermischungen (ohne Torfanteil); Aufwuchs von Kresse (Aschefreie Trockensubstanz)

4.3 Variation der Holzfaserherstellung und Fermentation

Um zu klären, ob es Alternativen zu der herkömmlichen Nadelholzvariante der Holzfaser gibt, wurden verschiedenen Holzarten und Holzherkünfte untersucht. Hierzu wurden kleine Chargen (ca. ½ m³) von Holzhäcksel hergestellt, ausgesiebt und in der Anlage von Toresa / Lägerdorf zu Holzfaser verarbeitet. Diese wurde dann am IBDF in Großsilos nach dem üblichen Verfahren unter Zusatz von 20 % Grünschnittkompost fermentiert. Insgesamt wurden drei Probeherstellungen durchgeführt.

4.3.1 Erste Faserherstellung aus Saft-führendem Holz im Sommer, um das optimale Häckselgut herauszufinden; (SM04-1)

Varianten:

- 1 Eco-Toresa grob: Nadelholz (üblicher Rohstoff) der Firma Toresa
- 2 Eco-Toresa fein: Nadelholz (feine Sticks) der Firma Toresa
- 3 Knick fein: Kommunalschnitt-Häcksel (altes Material), < 2 cm gesiebt
- 4 Knick grob: Kommunalschnitt-Häcksel (altes Material), > 2 cm gesiebt
- 5 Knick lang: Gartenheckenschnitt-Häcksel (altes Material), lange Zweige
- 6 Knick frisch: Gartenheckenschnitt-Häcksel (frisches Material)

Zusatzvariante:

Z Pietal (restliche Faser aus früherer Produktion), Ansatz mit und ohne biodynamische Präparate

Untersuchungsprogramm:

Die verschiedenen Häckselmaterialien wurden kurzfristig besorgt und in kleinen Chargen zu Toresa transportiert, um dort aus ihnen Holzfaser herzustellen.

Die Holzfaser wurde mit 20% reifem abgesiebten Grünschnittkompost, 4 kg/m³ Hornmehl und 5 kg Bentonit / m³ Substrat in Kompostsilos zu 120 Liter angesetzt (Zusatzvariante in Großsilos zu 1 m³) und 1-2 mal monatlich umgesetzt. Bestimmung der Roh- und EN-Dichte, N-min, Salzgehalt und pH (nur Zusatzvariante).

Im Folgenden ist der zeitliche Ablauf wiedergegeben:

24.-25.6.04 Faserherstellung bei Toresa8.-9.7.04 Ansatz der Mischungen10.-16.7.04 Ansatz der Zusatz-Mischung

Ergebnisse:

Aufgrund des geringen Volumens an Material konnte die Herstellung der Holzfaser nur suboptimal erfolgen. Der Grobanteil in der Faser lag daher überdurchschnittlich hoch. Andererseits war es durch die erste Probeherstellung möglich, die Technik und Abläufe kennen zu lernen, um für die erste große Faserproduktion das optimale Material zu beschaffen. Lediglich die Zusatzvariante wurde in einem Versuch geprüft (siehe 4.4.1).

Die Rotte des Materials verlief den Umständen entsprechend gut. Die zu fein zerriebene Holzfaser aus dem härteren alten Holzhäcksel lieferte aber ein etwas zu dichtes Substrat.

Da in kurzer Folge eine weitere Faserherstellung erfolgte, wurde auf eine Prüfung der Substrate im Versuch verzichtet. Nur auf analytischem Weg wurden die Varianten begleitet.

Abb.: 4.3.1: Herstellung des Häckselgutes aus Baumschnitt für die Holzfaserherstellung

4.3.2 Zweite Faserherstellung aus Sommer-Baumschnitt (übliche Methode); Ansatz Anfang August 04 (SM04-2)

Varianten:

- 1 Nadelholz (üblicher Rohstoff von Toresa)
- Pappelholz (schnellwüchsiger Nachwachsender Rohstoff; für den Versuch aus überständigen Bäumen, auf 50 mm gehäckselt)
- 3 Heckenschnitt (z.B. aus norddeutscher Knickbewirtschaftung; für den Versuch aus Waldrand-Schnitt auf 50 mm gehäckselt)

<u>Untersuchungsprogramm:</u>

Pappelholz aus Stämmen von 60- bis 80-jährigen Pappeln wurde in einem Großhäcksler auf 50 mm Häckselgut gehäckselt. In dem gleichen Häcksler wurde auch Heckenschnitt verarbeitet (siehe Abbildung 4.3.1). Aus dem Häckselgut wurde bei der Firma Toresa wiederum Holzfaser hergestellt, diesmal mehrere Kubikmeter pro Variante. Die Holzfaser wurde mit 20% reifem abgesiebten Grünschnittkompost, 5 kg/m³ Hornmehl und 1 kg Bionit / m³ Substrat in Großsilos zu 1000 Liter angesetzt und 1-2 mal monatlich umgesetzt. Untersucht wurden die Erden auf pH, Salzgehalt und N-min; außerdem wurde die Roh- bzw. EN-Dichte bestimmt.

Versuche:

Die Ansätze wurden nach 4 Monaten Fermentationszeit im Praxistest mit Feldsalat bei Natterer einschließlich Weiterkultur im Betrieb Willmann (siehe PT04-2) sowie in einer Probepressung mittels der Unger-Perfekt am IBDF mit anschließender Aussaat von Feldsalat getestet (siehe AV04-2, Kapitel 4.4.1).

Im Folgenden ist der zeitliche Ablauf der Herstellung wiedergegeben:

28./29.7.	Faserherstellung bei Toresa
36.8.04	Mischungen angesetzt
23.12.04	Pressen und Aussaat der Erden IBDF
1819.3.05	Ernte Feldsalat IBDF
15.12.04	Pressen und Aussaat der Erden Betrieb Natterer
24.2.05	Auspflanzung Betrieb Willmann
25.2.05	Probeernte Feldsalat Kisten Natterer
April 05	Ernte Betrieb Willmann

4.3.3 Dritte Faserherstellung aus Winterbaumschnitt; Ansatz März 05 (SM05-1)

Saft-freies Holz steht nur in den Wintermonaten zur Verfügung und muss dann gewonnen werden. Da dieser Zeitpunkt der Praxis am nächsten kommt, soll eine ausreichende Menge an Holzfaser produziert werden, die auch für weitere Ansätze ausreicht.

Varianten:

- 1 Nadelholz (alternativer Rohstoff von Toresa, mit höherem Rindenanteil)
- 2 Nadelholz (üblicher Rohstoff von Toresa, ohne Rindenanteil)
- 3 Pappelholz (schnellwüchsiger Nachwachsender Rohstoff; für den Versuch aus überständigen Bäumen, auf 50 mm gehäckselt)
- 4 Heckenschnitt (z.B. aus norddeutscher Knickbewirtschaftung; für den Versuch aus Waldrand-Schnitt auf 50 mm gehäckselt)

Zusatzvariante:

Z Nadelholz (Holzfaser der Fa. Blieninger; feinere Qualität)

Untersuchungsprogramm:

Aus dem Häckselgut wurde bei der Firma Toresa wiederum Holzfaser hergestellt, diesmal mehrere Kubikmeter pro Variante. Die Holzfaser wurde mit 20% reifem abgesiebten Grünschnittkompost, 5 kg/m³ Hornmehl (Oscorna) und 5 kg Agrar-Bentonit / m³ Substrat in Großsilos zu 1000 Liter angesetzt und 1-2 mal monatlich umgesetzt. Die Faser der Fa. Blieninger wurde erst zwei Monate später angesetzt.

Versuche:

Die Ansätze wurden jeweils nach 4 Monaten Fermentationszeit in einer Probepressung mittels der Unger-Perfekt am IBDF mit anschließender Aussaat von Kohlrabi (siehe AV05-1) bzw. Chinakohl und Feldsalat (siehe AV05-2) getestet.

Im Folgenden ist der zeitliche Ablauf der Herstellung wiedergegeben:

30.36.4.05	Mischungen zur Fermentation angesetzt
2223.6.05	Zusatzmischung zur Fermentation angesetzt
1113.7.05	Mischungen zum Pressen erstellt
27.7.05	Pressen und Aussaat der Erden IBDF (AV05-1)
25.10.05	Mischungen zum Pressen erstellt
1.11.05	Pressen und Aussaat der Erden IBDF (AV05-2)

4.4 Substratversuche am IBDF

4.4.1 Substratversuch 1; Mitte Dezember 04 - Mitte März 05 (AV04-2)

Da nach Aussage der Substratproduzenten noch keine neuen Angebote bezüglich torfreduzierter Anzuchterden im Verkaufsprogramm waren, wurde auf den ersten der jährlichen Vergleichsversuche der am Markt erhältlichen Bio-Presserden verzichtet. Es wurden lediglich die eigenen torfreduzierten Mischungen aus den zuvor beschriebenen Substratansätzen untersucht und mit 2 Substraten der Firma Klasmann-Deilmann verglichen. Bei Letzteren handelte es sich um die damalige Standardmischung des Biopotgrond mit 80% Torf und um eine Sondermischung für den Betrieb Natterer mit 70% Torf.

Varianten:

- 1-6 Zuschlagmischungen (SM04-3) mit 50 % Torfgehalt
- 7-12 Zuschlagmischungen (SM04-3) mit 30 % Torfgehalt
- 13-15 2. Faserherstellung (SM04-2) mit 50 % Torfgehalt
- 16-18 2. Faserherstellung (SM04-2) mit 40 % Torfgehalt
- 19-21 2. Faserherstellung (SM04-2) mit 30 % Torfgehalt
- 22 Biopotgrond (Klasmann) mit 80 % Torfgehalt
- 23 Biopotgrond (Klasmann; Mischung Natterer) mit 70 % Torfgehalt

Untersuchungsparameter:

Vor Verwendung der Mischungen TS-Gehalt, pH, N-min (Ammonium/Nitrat) im CaCl2-Extrakt, Salzgehalt, Rohdichte, Schüttdichte nach EN;

Einstellen vom N-Level mittels Hornmehl; Einstellen vom pH-Level mittels Algenkalk Probepressung mittels "Unger Perfekt Erdpresstopfmaschine"; Bestimmung der Pressdichte; anschließende Aussaat und Kultur von Feldsalat (Sorte Vit / Bingenheim); 3 Wiederholungen á 98 Pflanzen mit jeweils ca. 5 Samen);

Kultur der Pflanzen im beheizten (Frostfreiheit) Gewächshaus in den Anzuchtkisten bis zur vollständigen Ausfüllung der Kisten. Ernte der (überständigen) Pflanzen, Ertragsermittlung, Bestimmung des Rest-N-min im Boden, pH-Wert und Salzgehalt.

Im Folgenden ist der zeitliche Ablauf der Versuche wiedergegeben:

36.8.04	Mischungen angesetzt
23.12.04	Pressen und Aussaat der Erden im IBDF
27.12.04	Umstellen aus Keimraum in Gewächshaus
1819.3.05	Ernte des Feldsalat im IBDF

Ergebnisse:

In Tab. 4.4.1 sind die Bodenparameter dargestellt. Der pH-Wert lag bei allen Substraten im mittleren Bereich zwischen 5,5 und 6,2. Die Leitfähigkeit lag ebenfalls auf einem für Kompostsubstrate üblichen Niveau, was einem Salzgehalt von circa 1,5 g pro Liter entspricht. Auch die Stickstoffversorgung gemessen an dem Nmin-Gehalt war einheitlich und ausreichend. Das Gewicht der verschiedenen Substrate variierte nur gering und glich somit den beiden Kontrollsubstraten der Firma Klasmann-Deilmann. Es lag einheitlich bei 45 bis 50 g pro Bällchen. Da aber praxisbedingt die Höhe der Bällchen unterschiedlich ausfiel, muss bei diesem Parameter mit einer größeren Streuung gerechnet werden.

22

23

KD-80

KD-70

-

Präp. Torf NO3 Gewicht Variante Faser Ton Hq Salz NH4 Nmin TS μS mgN/100g g 32,27 37,73 To0+ 50 342 34,2 48,0 1 Toresa _ + 5,57 5,46 ToAb+ Toresa Edasil 5,57 360 2,38 37,03 34.8 48.2 50 39.41 3 ToNa+ Toresa Bionit + 50 5,52 369 2,66 37,52 40,18 34,6 46,3 To0-Toresa 300 44,38 34,4 46,4 4 50 5,62 6,02 38,36 5 ToAb-Toresa Edasil 50 5,60 368 2,31 36,75 39,06 34,3 44,9 47,4 ToNa-Toresa Bionit 50 5,71 301 5,39 30,10 35,49 35.0 6 7 To0+ Toresa + 30 5,85 331 6,58 35,56 42,14 35,5 48,5 30 47.4 8 ToAb+ Toresa Edasil + 5,93 381 2,94 33,18 36,12 36,7 Toresa 9 ToNa+ Bionit + 30 5,88 408 3,57 36,33 39,90 37,4 44,8 48,5 10 To0-Toresa 30 5,85 370 5,74 30,10 35,84 37,0 ToAb-38,22 44,3 11 Toresa Edasil 30 5,96 393 3,15 35,07 36,7 12 ToNa-Toresa Bionit 30 5,95 368 3,22 32,69 35,91 35,7 49,6 13 To50 Toresa Edasil 50 5,46 350 4,06 34,93 38,99 33,6 45,1 + 14 Kn50 Knick Edasil 50 5,82 317 6,58 29,26 35,84 34,2 46,2 Pappel Edasil 50 36.96 43.0 15 Pa50 5.77 345 4.41 32.55 34.2 To40 Toresa Edasil 40 385 2,94 39,69 47,9 16 5,63 36,75 34,4 17 Kn40 Knick Edasil 40 6,07 365 5,95 29,26 35,21 35,5 42,6 5,67 18 Pa40 Pappel Edasil + 40 6,12 351 29,26 34,93 35,7 43,0 19 To30 Toresa Edasil 30 5,79 385 3,85 35,07 38,92 34,8 53,7 20 Kn30 Knick Edasil 30 6,24 221 35,21 51,1 4,76 30,45 36,5 21 Pappel Edasil 403 34,65 Pa30 30 6,28 4,13 30,52 35,8 51,2 +

Tab. 4.4.1: Substratversuch 1: Bodenkenngrößen der Substrate

+

+

-

80

70

Die Keimung erfolgte sehr gleichmäßig, sodass nur wenige Fehlstellen auftraten. Im Mittel keimten 3,5 der ca. 5 Samen. Eine Differenzierung nach Torfgehalt, Holzfaserart oder andere Parameter war nicht erkennbar.

416

376

0,91

13,72

45,64

44,66

46,55

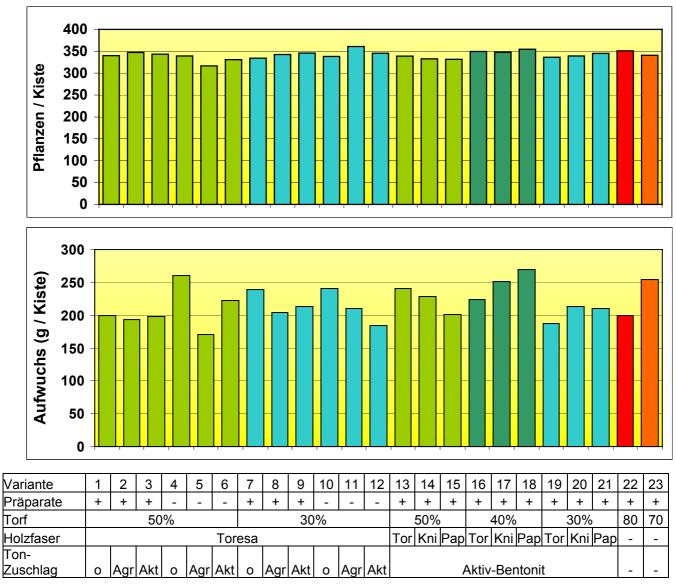
58,38

29,3

31,9

50,4

49,4


5,50

6,21

Der Aufwuchs in den Kisten (Abb. 4.4.1 und Tab. A-6 im Anhang) variierte trotz der gleichmäßigen Keimung stark (170-270 Gramm pro Kiste). Eine eindeutige Zuordnung zu einem der Untersuchungsparameter war nicht möglich. Das Ertragsniveau lag im Bereich der beiden Vergleichssubstrate mit dem üblich hohen Torfanteil. Lediglich die Variante fünf fiel nach unten heraus, ohne dass hierfür eine Begründung gefunden werden konnte.

Auch wenn man Mittelwerte über die verschiedenen Parameter bildet (siehe Tabelle im Anhang), lassen sich keine klaren Gesetzmäßigkeiten erkennen. Weder der Torfanteil, noch die verschiedenen Tonarten, noch die Herkunft der Holzfaser zeigen deutliche Effekte.

Aus dem Versuch kann somit gefolgert werden, dass auch mit Torfersatz auf Basis der fermentierten Holzfaser unterschiedlichen Ursprungs ein ähnliches Ertragspotenzial zu erreichen ist wie mit den herkömmlichen Biosubstraten. Tauf Anteil wie auch Zuschlagstoffe wirkten sich nicht ertragverändernd aus.

Abkürzungen: Tor = Toresa; Kni = Knick; Pap = Pappel; o = Ohne; Agr = Agrarbentonit; Akt = Aktiv-Bentonit

Abb. 4.4.1: Substratversuch 1: Aufwuchs von Feldsalat

4.4.2 Substratversuch 2; Juli 05 - August 05 (AV05-1)

Im 2. Substratversuch wurden Mischungen aus eigener Produktion untersucht. Ziel war eine Vorauswahl für die Eignung für das großtechnische Erdpresstopfverfahren.

Varianten:

.011.					
Faser:					
1, 2, 11, 12	Toresa 2004 (ohne Rindenanteil)				
3, 4, 13, 14	Toresa 2005 (mit Rindenanteil)				
5, 6, 15, 16	Toresa Pappel				
7, 8, 17, 18	Toresa Knick				
9, 10, 19, 20	Pietal				
biologisch-dynamische Präparate:					
1-10	ohne				
11-20	mit				
T 1 14.					

Torfgehalt:

ungerade Zahl: 50 % Torfgehalt, 30 % Faser, 20 % Kompost gerade Zahl: 50 % Torfgehalt, 50 % Faser, 20 % Kompost

Vergleich:

21 Biopotgrond (Klasmann) mit 80 % Torfgehalt

Untersuchungsparameter:

Vor Verwendung der Mischungen TS-Gehalt, pH, N-min (Ammonium/Nitrat) im CaCl2-Extrakt, Salzgehalt, Rohdichte, Schüttdichte nach EN;

Einstellen vom N-Level mittels Hornmehl;

Probepressung mittels "Unger Perfekt Erdpresstopfmaschine"; Bestimmung der Pressdichte; anschließende Aussaat und Kultur von Kohlrabi (Sorte Noriko / Bingenheim); 4 Wiederholungen á 98 Pflanzen);

Kultur der Pflanzen im Gewächshaus in den Anzuchtkisten bis zur vollständigen Ausfüllung der Kisten. Ernte der (überständigen) Pflanzen, Ertragsermittlung, Bestimmung des Rest-N-min im Boden, pH-Wert und Salzgehalt.

Im Folgenden ist der zeitliche Ablauf der Versuche wiedergegeben:

1113.7.05	Mischungen für Versuch
27.7.05	Pressen und Aussaat der Erden im IBDF
30.7.05	Umstellen aus Keimraum in Gewächshaus
31.8.05	Ernte des Feldsalat im IBDF

Ergebnisse:

Die Keimung erfolgte gleichmäßig, lediglich die Toresa aus Heckenschnitt mit 30 % Torf (14 und 18) zeigte einen schlechteren Aufgang (siehe Abbildung 4.4.2). Auch lagen die Varianten mit nur 30% Torf signifikant unter denen mit 50% Torf, was in der Praxis aber nur eine Differenz von 2,5 Pflanzen pro Kiste ausmachte (siehe Anhang Tab. A-8). Eine weitere Differenzierung nach Torfgehalt, Holzfaserart oder Präparate war nicht erkennbar.

Der Aufwuchs in den Kisten variierte extrem stark (216-512 Gramm pro Kiste), wobei bei allen Fasern und Torfgehalten niedrige und hohe Erträge vertreten waren (siehe Abbildung 4.4.3 Tab. A-8). Das Ertragsniveau der Mischungen mit 50% Torfanteil lag im Bereich des Vergleichssubstrates mit dem üblich hohen Torfanteil von 80 %. Von den Fasern fiel die Pappel (5, 6, 15, 16) mit dem niedrigsten (295g), das Pietal (9, 10, 19, 20) mit dem höchsten Ertragsdurchschnitt (485g) auf. Der Torfanteil spielt zwar im Mittel über alle Varianten eine deutliche Rolle (435g bei 50%, 326g bei 30% Torf), betrachtet man jedoch nur die überlegene Faser Pietal, so ist der Unterschied nicht mehr signifikant (492g zu 478g; siehe Anhang Tab. A-8). Ein Einfluss der Präparation konnte nicht festgestellt werden. Zwar finden sich einzelne signifikante Unterschiede im direkten paarweisen Vergleich, doch können sie positiv wie negativ ausfallen. Der nahezu vollständige Ausfall der Variante 6 muss auf einen

Aufdüngungsfehler zurückgeführt werden, da in dieser Variante kein verfügbarer Stickstoff nachgewiesen werden konnte.

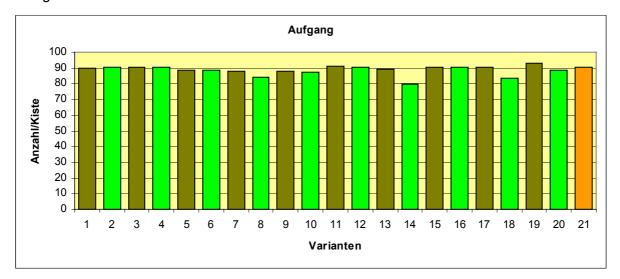
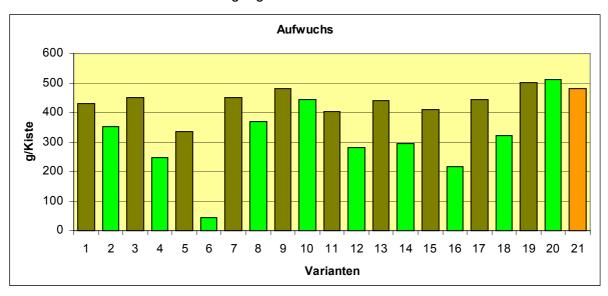



Abb. 4.4.2: Substratversuch 2: Aufgang von Kohlrabi

Abb. 4.4.3: Substratversuch 2: Aufwuchs von Kohlrabi (überständige Anzuchtkisten)

Aus dem Versuch kann gefolgert werden, dass bei Verwendung der geeigneten Holzfaser (Pietal) auch mit einem Torfersatz bis zu 70% ein ähnliches Ertragspotenzial erreicht werden kann wie mit den herkömmlichen Biosubstraten. Da jedoch die thermisch aufgeschlossene Holzfaser Pietal nicht mehr hergestellt wird, muss noch geprüft werden, ob durch die ähnliche Faser Torbo gleich gute Ergebnisse erzielt werden können (s.u.). Auch muss der Einfluss des Zuschlagstoffes Bentonit bei den hohen Anteilen an Torfersatz überprüft werden. Es ist davon auszugehen, dass die verwendeten 5 kg Bentonit / m³ Substrat zu hoch angesetzt sind.

4.4.3 Substratversuch 3; November 05 - Frühjahr (AV05-2)

Im 3. Versuch wurden die derzeit verfügbaren Biosubstrate bekannter Firmen mit einer Reihe eigener Substrate verglichen. Bei den eigenen Substraten war die Frage, wie weit man mit dem Torfersatz gehen kann, ohne dass es zu größeren Einbußen kommt. Daher wurde auch ganz torffrei gearbeitet.

Varianten:

1	BI50-	Torbo (ohne Präparate), 50% Torf
2	BI50+	Torbo (mit Präparate), 50% Torf
3	BI25-	Torbo (ohne Präparate), 25% Torf
4	BI25+	Torbo (mit Präparate), 25% Torf
5	BIO-	Torbo (ohne Präparate), 0% Torf
6	BI+	Torbo (mit Präparate), 0% Torf
7	K80	Biopotgrond (Klasmann), 80% Torf, 20% Kompost
8	K70	Biopotgrond (Klasmann), 70% Torf, 30% Kompost
9	K50	Biopotgrond (Klasmann), 50% Torf, 20% Toresa fermentiert
10	F70	Biopresstopferde (Floragard), 70% Torf, 30% Kompost
11	F50	Biopresstopferde (Floragard), 50% Torf, 20% Kompost, 30% Holzfaser
12	B60	Eco Grond mod. (Brill), 60% Torf, 20% Kompost, 20% Holzfaser
13	T70	Tref – Eco (Tref), 70% Torf, 30% Rinden-Kompost
14	T50	Tref – Eco (Tref), 50% Torf, 50% Rinden-Kompost

Untersuchungsparameter:

Vor Verwendung der Mischungen TS-Gehalt, pH, N-min (Ammonium/Nitrat) im CaCl2-Extrakt, Salzgehalt, Rohdichte, Schüttdichte nach EN;

Einstellen vom N-Level mittels Hornmehl;

Probepressung mittels "Unger Perfekt Erdpresstopfmaschine"; Bestimmung der Pressdichte; anschließende Aussaat und Kultur von Chinakohl (Sorte Granat / Bingenheim), 2 Wiederholungen und Feldsalat (Sorte Vit / Bingenheim), 4 Wiederholungen á 98 Pflanzen);

Kultur der Pflanzen im Gewächshaus in den Anzuchtkisten bis zur vollständigen Ausfüllung der Kisten. Ernte der (überständigen) Pflanzen, Ertragsermittlung, Bestimmung des Rest-Nmin im Boden, pH-Wert und Salzgehalt. 2 Wiederholungen des Feldsalates wurden auf Erdkisten weiterkultiviert.

Im Folgenden ist der zeitliche Ablauf der Versuche wiedergegeben:

5.8.05	Ansatz für Fermentation
25.10.05	Mischungen für Versuch
1.11.05	Pressen und Aussaat der Erden
16.12.05	Ernte Chinakohl
23.2.06	Auspflanzen von Feldsalat
8.2.06	Ernte Feldsalat Kisten
27.3.06	Ernte Feldsalat Pflanzung

Ergebnisse:

Vergleicht man die Böden bezüglich ihrer chemischen Eigenschaften zum Zeitpunkt des Pressens (siehe Tab. A-10 im Anhang), so fallen nur wenige Unregelmäßigkeiten auf. Der pH-Wert der verschiedenen Substrate liegt zwischen 5,3 und 6,4. Die hohen pH Werte finden sich in der Regel bei den Substraten, die nur einen geringen Torfgehalt aufweisen. Diese Erhöhung des pH-Wertes kann bei den Varianten eins bis sechs beispielhaft verfolgt werden. Der Salzgehalt wie auch die Stickstoffverfügbarkeit liegen im üblichen Rahmen.

Die **Pressung** verlief zufriedenstellend. Lediglich die gröberen Substrate wie z.B. Treff 2 mit 50% Rindenhumus zeigten eine mangelhafte Stabilität. Die eigenen Torfersatzvarianten ließen sich gut pressen, hatten aber wegen des hohen Bentonitgehaltes ein stark reduziertes Porenvolumen.

Die gepressten Bällchen wurden später im Labor auf einige physikalische Parameter hin untersucht. So interessierte die maximale Wasseraufnahmefähigkeit der gepressten Erden ebenso wie der Verbrauch an Substrat. In Tabelle 4.4.2 sind die Ergebnisse aufgelistet. Die Wasseraufnahmefähigkeit der Erden war erstaunlich homogen. Die Erden mit reduziertem Torfanteilen lagen alle auf einem ähnlichen Niveau zwischen 400 und 440 ml Wasser pro 500 ml Substrat im wassergesättigten Zustand. Die Substrate mit 60 beziehungsweise 70% Torf zeigten ein weniger einheitliches Bild. Die Variante B60, F70 und T70 lagen auf einem ähnlich niedrigen Niveau die torfreduzierten Varianten wohingegen die Substrate der Firma Klasmann-Deilmann mit 70% und 80% Torf deutlich höhere Werte bis über 500 ml erbrachten.

Tab. 4.4.2: physikalische Parar	neter der Presserden	(Varianten s. oben)
---------------------------------	----------------------	---------------------

Nr.	Var.	Torf %	präp.	Firma	PD g/l	RD g/l	EN g/l	PD/EN	RD/EN	H2O ml
1	BI50-	50	-		346	308	227	1,53	1,36	441
2	BI50+	50	+		352	300	219	1,61	1,37	419
3	Bl25-	25	-		352	289	207	1,70	1,40	410
4	BI25+	25	+		333	331	250	1,33	1,32	410
5	BIO-	0	-		367	402	331	1,11	1,22	393
6	BIO+	0	+		373	373	273	1,37	1,37	406
7	K80	80		K	300	281	216	1,39	1,30	490
8	K70	70		K	292	241	183	1,59	1,32	511
9	K50	50		K	312	247	188	1,66	1,31	434
10	F70	70		F	270	259	191	1,41	1,35	436
11	F50	50		F	319	328	244	1,31	1,34	425
12	B60	60	-	В	267	290	209	1,28	1,39	421
13	T70	70		Т	245	204	150	1,64	1,36	433
14	T50	50		Т	364	321	239	1,52	1,34	374

In der Praxis sorgen die verschiedenen Möglichkeiten, das Volumengewicht der Erden zu bestimmen, oftmals für Verwirrung. Es wurde daher in einer Laboruntersuchung gemessen, wie hoch der tatsächliche Verbrauch an Substrat im Pressvorgang ist. Dabei wurden die drei Größen EuroNorm (EN), Rohdichte (RD) und die tatsächliche Pressdichte miteinander verglichen. Die tatsächlich gemessenen Werte mussten für den Vergleich auf ihren Trockensubstanzgehalt herunter gerechnet werden. Diese Werte sind in der Tabelle wiedergegeben. Die Verhältnisse zwischen den drei Berechnungsmöglichkeiten schwanken je nach Substrat beträchtlich. Der übliche Bereich liegt zwischen 1,3 und 1,7, was bedeutet, dass z.B. das 1,7 fache an Substratsvolumen für das Pressen der Erde benötigt wird. Keine Erklärung lässt sich für die Abweichung der Variante 5 bezüglich ihres Verhältnisses der Pressdichte zur EN-Dichte finden. Es kann wohl davon ausgegangen werden, dass es sich hierbei um einen Messfehler handeln muss.

Die gepressten Erdbällchen wurden zudem nach Trocknung auf eine Restfeuchte von 10% auf ihre *Wiederbefeuchtungsfähigkeit* hin untersucht (s. Abbildung 4.4.4). Deutlich ist zu erkennen, dass einmal getrocknete Erden mit höheren Torfgehalten nahezu nicht mehr befeuchtet werden können. Dieser Sachverhalt ist als die wesentlichste negative Eigenschaft von Torf bekannt. Wie die Untersuchung zeigt, reichen aber bereits geringe Mengen an Torf aus (25%; Variante 3 und 4), um die Wiederbenetzbarkeit drastisch zu reduzieren. Lediglich die beiden torffreien Substrate (Variante 1 und 2) konnten in kurzer Zeit wieder eine größere Menge an Wasser aufnehmen. Auch die Spezialmischung von Floragard mit der sehr feinen staubartigen Holzfaser (Variante 11) nahm ebenfalls eine größere Menge an Wasser auf. Interessant ist der Verlauf bei der 50%-Variante von Treff: nach 60 Stunden legte diese

plötzlich an Wasseraufnahmekapazität zu. Hierbei scheint wohl der Rindenhumus eine besondere Rolle zu spielen.

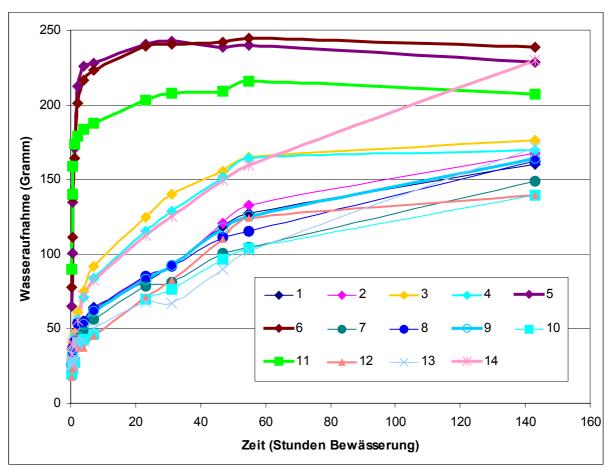


Abb. 4.4.4: Substratversuch 3: Wiederbefeuchtung von getrockneten Substratbällchen

Die *Keimung* erfolgte bei beiden Pflanzen ungleichmäßig. Die Variante 5 fiel komplett heraus und zeigte einen sehr schlechten Aufgang. Eine Erklärung konnte bislang nicht dafür gefunden werden. Vergleicht man die Industriesubstrate untereinander, so fiel hier das Substrat B60 durch eine anfangs signifikant gehemmte Keimung auf. Jedoch bereits am 2. Tag war dieser Unterschied nicht mehr signifikant. Der Aufgang am Ende war durch alle Varianten hindurch gut.

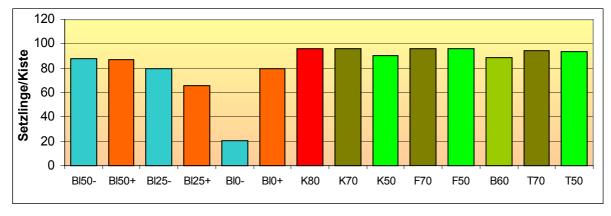


Abb. 4.4.5: Chinakohl: Keimung zum 7. Tag (gekeimte Setzlinge pro Kiste)

Der *Aufwuchs* in den Kisten wurde bei Chinakohl bereits im Dezember erfasst. Hier zeigte sich ein erstaunliches Bild, dass von dem der Keimung z.T. erheblich abwich. So zeigten die

torfreduzierten bzw. -freien eigenen Substrate die besseren Erträge (46-47g), die 50%-Varianten fielen deutlich ab (36-37g). Die Industrieerden konnten überwiegend gute Erträge erbringen (46-56g) bis auf die Erden B60 (33g) und T70 (32g). Die höchste Aufwuchsleistung verzeichneten die Standard-Erde von Floragard (F70; 56g) und das 70%-Substrat von Klasmann (K70; 53g).

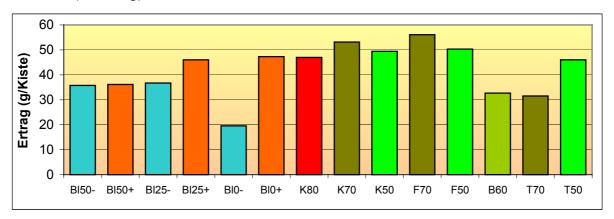


Abb. 4.4.6: Chinakohl: Aufwuchs der Jungpflanzen (in Gramm pro Kiste)

Was den Chinakohl betrifft ergaben die torffreien Substrate ein ähnliches Ergebnis wie die stark torfhaltigen.

Die **Keimung** beim **Feldsalat** zeigt eine ähnliche Depression bei der Variante BI0-. Die anfänglich starken Steuerungen wuchsen sich aber später wieder aus.

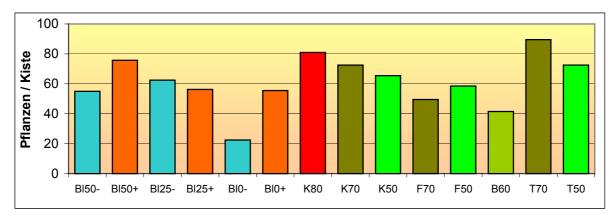


Abb. 4.4.7: Feldsalat: Keimung der Jungpflanzen (in Pflanzen pro Kiste)

Der **Aufwuchs** des Feldsalates wurde zu mehreren Zeitpunkten bestimmen. Die erste Erhebung fand statt, als die Pflanzen eine Größe erreicht hatte, wo sie normalerweise ausgepflanzt werden müssen (s. Abbildung 4.4.8 oben). Zu diesem Zeitpunkt gab es keine eindeutige Wirkung des Torfgehaltes, betrachtet man insbesondere die industriellen Substrate. Die Substrate F70 und F50, aber auch die drei Substrate der Firma Klasmann zeigen keine großen Unterschiede. Bei den beiden Substraten der Firma Tref liegt sogar das Substrat mit 50% Torfgehalt deutlich über dem mit 70% Torf.

Der zweite Erntezeitpunkt lag etwa einen Monat später. Die Pflanzen haben jetzt deutlich an Größe zugenommen, hatten jedoch noch nicht die Bodenvorräte an Stickstoff aufgebraucht (siehe Tabelle A-11 im Anhang). Verglichen mit dem Termin davor fällt Variante fünf noch deutlicher nach unten heraus. Auch das Substrat der Firma Bril (B60) hatte deutlich an Wuchsleistung eingebüßt.

Der dritte Erntezeitpunkt lag wiederum einen Monat später. Diesmal wurde der Feldsalat geerntet, der auf kleine Kisten mit Erde ausgesetzt worden war. Auch dieser Erntezeitpunkt gab ein ähnliches Bild ab wie die beiden anderen zuvor. Auffallend war jetzt eine stärkere Differenzierung der ersten sechs Varianten hinsichtlich der Präparatewirkung. Die mit den biologisch-dynamische Kompost Präparaten versehenen Substrate zeigten einen 15 bis 20% höheres Wachstum bei den 50 beziehungsweise 25% Torf-Varianten.

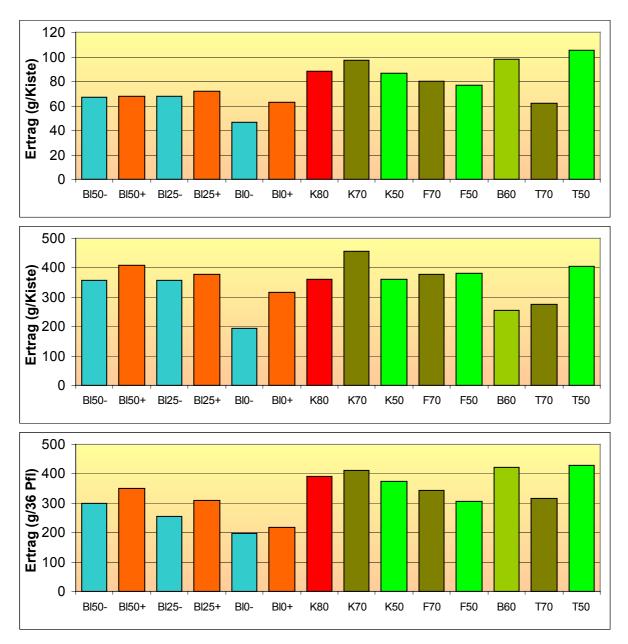


Abb. 4.4.8: Feldsalat: Aufwuchs der Jungpflanzen zu drei Zeitpunkten. Oben: Zeitpunkt der Auspflanzung; Mitte: überständige Pflanzen; Unten: auf Erde ausgepflanzte Salatpflanzen

Nach der Ernte der Pflanzen wurde der Boden auf den **Reststickstoffgehalt** hin untersucht (Tabelle A-11 im Anhang). Die Erden wiesen noch einen ausreichenden Gehalt an mineralisiertem Stickstoff auf. Alle Industriesubstrate, außer die drei der Firma Klasmann, hatten noch erhöhte Ammoniumwerte. Bei den ausgepflanzten Erden lagen die Gehalte nach dem Abernten bei den Industrie-Substraten extrem niedrig. Lediglich das Substrat F50 zeigte noch einen geringen Nitratgehalt. Die eignen Mischungen hatten noch einen deutlichen Restgehalt an Nitrat.

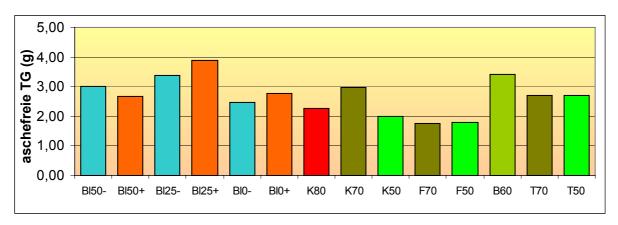


Abb. 4.4.9: Wurzelbildung von Feldsalat, gemessen an der Durchwurzlung der Erde, außerhalb des Erdpressbällchens

Bei den ausgepflanzten Salatpflanzen wurde nach dem Abernten die *Wurzelbildung* untersucht. Es sollte dabei die Frage geklärt werden, ob ein Unterschied in der Durchwurzlung des Bodens gefunden werden kann, je nach Art der Substrate beziehungsweise ihres Torfgehaltes. Die Durchwurzlungsintensität war bei allen Substraten ähnlich (Abbildung 4.4.9), wenn es auch vereinzelte Abweichungen gab. So lagen die niedrigsten Wurzelmengen bei den Industrie-Substraten, die höchsten mehr im Bereich der Torf-ärmeren eigenen Mischungen.

Beim Wurzel-Sprossverhältniss traten schon deutlichere Unterschiede zu Tage (Abb. 4.4.9). Hier fielen die industriellen Erden durch ein extrem niedriges Verhältnis auf, während die eignen Erden insbesondere mit einem geringen Torfanteil ein deutlich vergrößertes Wurzel-Sprossverhältnis vorwiesen.

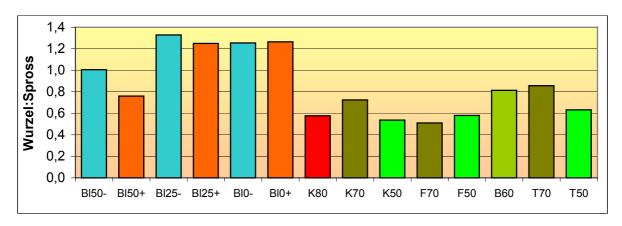


Abb. 4.4.9: Wurzel:Spross-Verhältnis von Feldsalat, gemessen an der Durchwurzlung der Erde, außerhalb des Erdpressbällchens

4.4.4 Substratversuch 4; Juli 06-September 06 (AV06-1)

In diesem Versuch wurde die im späten Frühling 2006 hergestellte Holzfaser geprüft. Neben den drei unterschiedlichen Fasertypen (im Werk abgesiebte beziehungsweise ungesiebte Toresa sowie die bei Toresa hergestellte Pappelfaser) sollte in diesem Versuch geprüft werden, wie weit mit dem Torfgehalt heruntergegangen werden kann. Die bereits in verschiedenen Versuchen in der Praxis erfolgreiche Fasermischung mit 50% Torf galt als Standard. Die Reduktionsstufen betrugen 30% Torf beziehungsweise vollständig torffreie Substrate. Als weitere Parameter wurde nochmals der Zusatz von Bentonit untersucht, dies jedoch nur bei der Pappelfaser. Als Praxis übliche Vergleichswerte diente der Biopotgrond der Firma Klasmann mit 70% Torfanteil. Die Varianten sind im folgenden aufgelistet.

Varianten:

- 1 Toresa (gesiebt), 50% Torf
- 2 Toresa (gesiebt), 30% Torf
- 3 Toresa (gesiebt), ohne Torf
- 4 Toresa (ungesiebt), 50% Torf
- 5 Toresa (ungesiebt), 30% Torf
- 6 Toresa (ungesiebt), ohne Torf
- 7 Pappel-Faser mit Bentonit, 50% Torf
- 8 Pappel-Faser mit Bentonit, 30% Torf
- 9 Pappel-Faser mit Bentonit, ohne Torf
- 10 Pappel-Faser ohne Bentonit, 50% Torf
- 11 Pappel-Faser ohne Bentonit, 30% Torf
- 12 Pappel-Faser ohne Bentonit, ohne Torf
- 13 Biopotgrond (Klasmann), 70% Torf, 30% Kompost

Untersuchungsparameter:

Vor Verwendung der Mischungen TS-Gehalt, pH, N-min (Ammonium/Nitrat) im CaCl2-Extrakt, Salzgehalt, Rohdichte, Schüttdichte nach EN;

Einstellen vom N-Level mittels Hornmehl;

Probepressung mittels "Unger Perfekt Erdpresstopfmaschine"; Bestimmung der Pressdichte; anschließende Aussaat und Kultur von Chinakohl (Sorte Granat / Bingenheim), 3 Wiederholungen und Eissalat (Sorte Laibacher Eis), 3 Wiederholungen á 98 Pflanzen);

Kultur der Pflanzen im Gewächshaus in den Anzuchtkisten bis zur vollständigen Ausfüllung der Kisten. Ernte der Jungpflanzen, Ertragsermittlung, Bestimmung des Rest-N-min im Boden, pH-Wert und Salzgehalt.

Zusätzlich wurden die Substrate im geschlossenen Kressetest getestet. Hierzu wurden fünf Wiederholungen angelegt.

Im Folgenden ist der zeitliche Ablauf der Versuche wiedergegeben:

5.8.06	Ansatz für Fermentation
31.7.06	Mischungen für Versuch
22.8.06	Pressen und Aussaat der Erden
24.8.06	Ansatz Kressetest
30.8.06	Ernte Kressetest
12.9.06	Ernte Chinakohl
19.9.06	Ernte Eissalat

Ergebnisse:

Die fermentierte Faser wurde vor der Zumischung auf ihre wichtigsten chemischen und physikalischen Parameter hin untersucht (siehe Tabelle 4.4.3). Der verfügbare Stickstoff war bei der Pappelfaser auf ein Minimum reduziert. Dies war nicht weiter verwunderlich, da gerade das Pappelholz als Weichholz bei der Faserherstellung sehr stark aufgeschlossen wurde und somit eine große Oberfläche aufwies, die die mikrobielle Fermentation und damit

die Stickstofffestlegung förderte. Auch der pH-Wert unterscheidet sich beider Pappelfaser deutlich von der Nadelholzfaser Toresa. Er liegt etwas über dem Neutralpunkt und damit anderthalb bis zwei Punkte über dem üblichen Niveau. Der Salzgehalt gemessen mit der elektrischen Leitfähigkeit lag hingegen bei der Pappelfaser im normalen Bereich. Hier war die Toresa Faser doppelt bis dreimal so hoch wie die Vergleichserde von Klasmann. Bei der Rohdichte lagen alle fünf Varianten auf demselben Niveau. Lediglich bei der Bestimmung der EN-Dichte zeigte sich eine deutliche Abweichung der Holzfaser von dem Klasmann Substrat: alle Holzfasern waren um etwa 1/4 leichter.

Substrat / Faser	NH4	NO3	Nmin	Nges	P2O5	K2O	RD	EN	TS	рН	Ec
Substiat / Fasei	ı	mgN/100g		%	mg/100g	mg/100g	g/l	kg/m³	%		μs/cm
Toresa gesiebt	1,3a	18,6b	20,0b	0,81	43,1bc	1,81b	526c	339c	47,0b	5,91b	818d
Toresa ungesiebt	3,1b	26,1d	29,3c	0,96	50,8c	2,44c	392a	319b	49,8d	5,72a	1137e
Pappel m. Ton	0,6a	1,0a	1,6a	0,96	36,9ab	2,67d	459b	317b	51,3e	7,24d	483b
Pappel o. Ton	0,8a	0,2a	1,0a	0,90	40,1ab	3,04e	518c	296a	47,7c	7,16c	542c
Klasmann 70%	16,2c	20,9c	37,1d	0,92	31,5a	0,74a	545c	430d	35,8a	5,76a	447a
	1,0	1,1	1,9	ns	9,3	0,21	33,8	12	0,44	0.07	35,5

Tab 4.4.3: Untersuchungsergebnisse der fermentierten Fasern vor der Mischung

Nach dem Mischen wurden die Substrate nochmals auf ihre chemischen und physikalischen Bodenkenngrößen hin untersucht. Die Untersuchungsergebnisse sind im Anhang in Tabelle A-13 und A-14 aufgelistet. Bis auf die etwas erhöhte Leitfähigkeit insbesondere der Toresa Faser zeigten sich keine größeren Anomalien bei den Parameter.

Bei dem Pressvorgang verhielten sich die Fasern recht unterschiedlich. Die Toresa konnte mit dem reduzierten Torfgehalt nur bedingt verarbeitet werden. Die vollständig torffreien Toresa-Varianten liefern nur schwer durch die Maschine. Daher wurde auch hier teilweise auf eine Aussaat verzichtet. Die Pappelfaser hingegen bereitete weniger Probleme bei der Pressung. Lediglich die torffreien Erdpressbällchen zeigten hier eine weniger stabile Konsistenz. Die optischen Unterschiede sind in der Abbildung 4.4.10 veranschaulicht.

Abb. 4.4.10: Vergleich der verschiedenen Substrate im Erdpressvorgang. (Varianten siehe Text)

Kressetest

Die gleichen verwendeten Substrate wurden zusätzlich in einem geschlossenen Kressetest geprüft. Das Wachstum war homogen, woraus geschlossen werden kann, dass keine negativen Ausgasungen aus den Substraten austraten (siehe Abbildung 4.4.11). In Abbildung 4.4.12 sind die Ergebnisse der Bestimmung des Aufwuchses abgebildet. Die Unterschiede zwischen den einzelnen Gläsern konnten statistisch nicht gesichert werden (siehe auch Tabelle A-15 im Anhang). Die Variation der Erträge in einer Größenordnung von +-10% kann daher nicht auf die Substrate zurückgeführt werden.

Abb. 4.4.11: Vergleich der verschiedenen Substrate im geschlossenen Kressetest. (Varianten siehe Text)

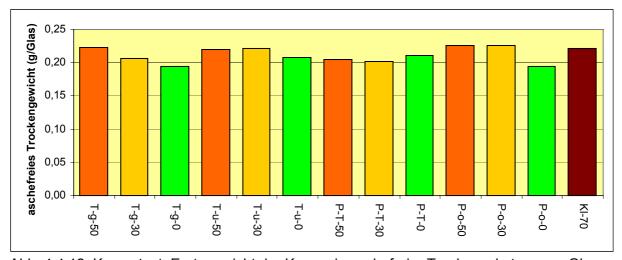


Abb. 4.4.12: Kressetest: Erntegewicht der Kresse in aschefreier Trockensubstanz pro Glas

Versuch mit Eissalat

Wie bereits oben beschrieben wurde auf die Aussaat der Variante T-g-0 verzichtet, da das Substrat eine zu geringe Pressfähigkeit aufwies. Die statistischen Verrechnungen sind in der Tabelle A-16 im Anhang zu finden.

Die Keimung erfolgte über allen Varianten relativ gleichmäßig (siehe Abbildung 4.4.13). Tendenziell waren die Toresa Varianten anfangs etwas im Rückstand, was sie jedoch im Laufe der Vegetation wieder aufholte.

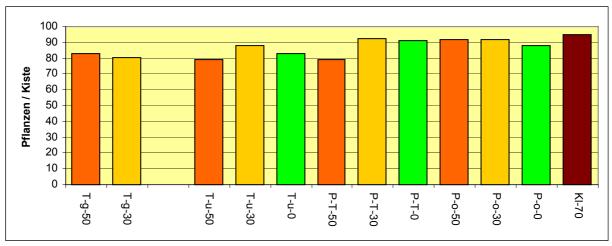


Abb. 4.4.13: Substratversuch 4: Aufgang Eissalat (Anzahl Pflanzen pro Kiste am achten Tag nach Aussaat)

Abb. 4.4.14: Substratversuch 4: Aufwuchs Eissalat-Jungpflanzen (Gewicht in Gramm pro Kiste)

Die Frühentwicklung der Eissalat-Pflanzen war durch die sommerliche Hitze deutlich beeinträchtigt, wodurch aber mögliche Probleme der Substrate stärker zum Vorschein kamen. In Abbildung 4.4.15 sind die Jungpflanzengewichte dargestellt. Den stärksten Abfall von der Vergleichsvariante Klasmann zeigen wiederum die torffreien Substrate. Aber auch die übrigen Substrate liegen deutlich unterhalb der Aufwuchsleistung auf dem Klasmann-Substrat. Untereinander lassen sie sich jedoch statistisch nicht trennen. Abschließen darf jedoch angemerkt werden, dass zu diesem späten Zeitpunkt im Jahresverlauf normalerweise Eissalat nicht mehr angebaut wird.

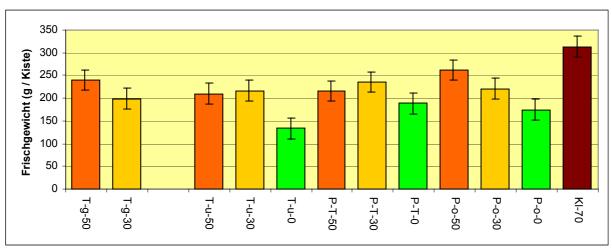


Abb. 4.4.15: Substratversuch 4: Aufwuchs Eissalat-Jungpflanzen (Gewicht in Gramm pro Kiste)

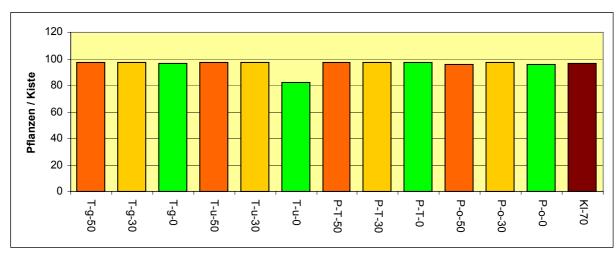


Abb. 4.4.16: Substratversuch 4: Aufgang Chinakohl (Anzahl Pflanzen pro Kiste)

Abb. 4.4.17: Substratversuch 4: Aussaatkisten mit Chinakohl (oben 50% Torf; Mitte 30% Torf; unten torffrei)

Versuch mit Chinakohl

Als zweite Versuchspflanze wurde Chinakohl gewählt. Hier wurden alle 13 Varianten ausgesät (siehe auch Tabelle A-17 im Anhang). Die Keimung erfolgte gleichmäßig und vollständig (siehe Abbildung 4.4.16). Die ungesiebte Toresa ohne Torf (Variante T-u-0) zeigte zwar eine verzögerte Keimung, was sich jedoch nicht statistisch sichern ließ.

Der Aufwuchs der Pflanzen war dann recht homogen, sieht man einmal von den torffreie Substraten ab (siehe Abbildung 4.4.17). Die 30% beziehungsweise 50%-Varianten ließen sich nicht statistisch von der Klasmann-Variante unterscheiden. Lediglich die torffreien Varianten zeigten einen deutlich schlechteren Aufwuchs. Es konnte aber zwischen der Toresa-Faser und der Pappelfaser ein Unterschied festgestellt werden. Die Pappelfaser zeigte ein deutlich besseres Wachstum gegenüber der Toresa-Faser, nicht nur bei den torffreien Varianten, sondern tendenziell auch bei den übrigen.

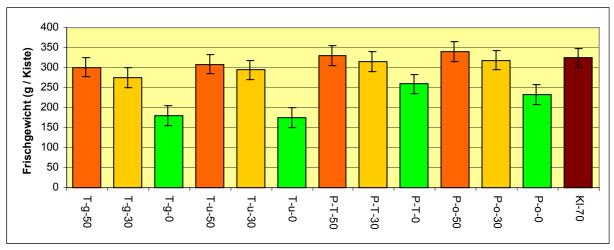


Abb. 4.4.18: Substratversuch 4: Aufwuchs Chinakohl-Jungpflanzen (Gewicht in Gramm pro Kiste)

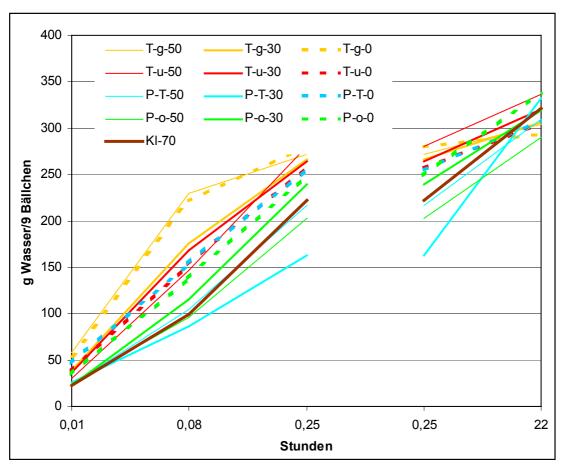


Abb. 4.4.19: Substratversuch 4: Wiederbefeuchtung ausgetrockneter Substrate

Wiederbefeuchtungstest

Mit den gepressten Erdbällchen aus dem Versuch wurde ein Wiederbefeuchtungstest durchgeführt. Hierzu wurden die Substrate bis auf eine Restfeucht von 10% getrocknet. Danach wurden sie über einen Zeitraum von mehreren Tagen stufenweise wieder befeuchtet. Zuerst wurden sie mit Wasser übergossen entsprechend dem Giesvorgang im Gewächshaus, um dann für Minuten beziehungsweise später auch Stunden vollständig in Wasser eingetaucht zu werden. Die Menge an aufgenommenen Wasser ist in Abbildung 4.4.19 dargestellt. Die größte Differenzierung ergibt sich gerade in den ersten beiden Stufen,

bei dem Übergießen mit Wasser und dem ersten Eintauchen in das Wasser. Die Differenzierung war jedoch in diesem Versuch nicht so deutlich wie in früheren Versuchen. Tendenziell zeigten aber die torffreien Substrate ein höheres Aufnahmevermögen an Wasser wie die torfhaltigen. Die in der Abbildung nicht dargestellten Werte können der Tabelle A-18 im Anhang entnommen werden.

Bodenanalysen am Ende der Untersuchung

Nach dem Abernten der Pflanzen wurde nochmals der Nmin-Gehalt im Boden bestimmt. Die Werte sind in Tab. A-19 im Anhang dargestellt. Die Gehalte der verschiedenen Substrate waren homogen und zeigten keinerlei Mangel. Es kann daher davon ausgegangen werden das die Unterschiede im Wachstum der Pflanzen nicht auf eine mangelhafte Stickstoffversorgung zurück zuführen sind.

Zusammenfassung

Die Pappelfaser kann als mögliche Torfersatzfaser eingesetzt werden. Sie war teilweise der Toresa Faser überlegen.

Das Absieben der Toresa-Faser zeigte lediglich für die Pressfähigkeit eine geringfügige Verbesserung des Substrats. Auf das Wachstum der Pflanzen hatte dies keinen Einfluss.

Der Zuschlag von Bentonit wirkte sich nicht auf den Ertrag aus. Eine Beeinflussung der Qualität der Pflanzen konnte in diesen Untersuchungen nicht geprüft werden.

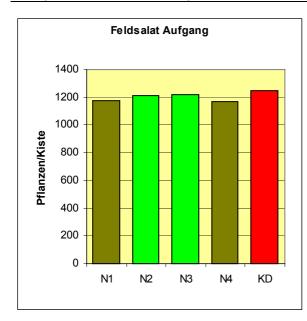
4.5 Prüfung der Substrate in Praxisbetrieben

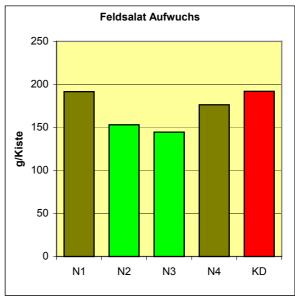
Die Prüfung der Substrate unter Praxisbedingungen verfolgte zwei Ziele. Zum einen sollten die am IBDF entwickelten Substrate auch auf der großen Unger Presstopfmaschine im Betrieb Natterer erprobt werden. Zum anderen sollten neue torfreduzierte Substrate der Firma Klasmann-Deilmann ebenfalls im Betrieb Natterer geprüft werden, mit dem Ziel, die Jungpflanzen anschließend in der landwirtschaftlichen Praxis auszupflanzen.

4.5.1 Test verschiedener Torf-reduzierter Substrate (PT04-1)

Im ersten Versuch wurden je zwei Mischungen mit 40 bzw. 64 % Torfanteil mit der Klasmann-Substrat-Mischung des Betriebes Natterer (70 % Torf) verglichen (Tab. 4.5.1). Der Kompostanteil lag bei den eigenen Mischungen bei 20 %, bei der Spezialmischung des Betriebes Natterer bei 30%. Den Rest zu den jeweils 100% bildeten verschieden aufbereitete Holzfaser-Komponenten. Zum einen sollte die feine Toresa-Faser mit der ebenfalls sehr feinen Pietal-Faser verglichen werden, zum anderen der deutlich reduzierte Torfanteil auf der Basis der beiden verfügbaren Toresa-Fasern (grob und fein). Und schließlich wurde noch die Tonzuschläge in unterschiedlichen Mengen geprüft (2 bzw. 5 kg/m³). Die Pressung erfolgte im November 04 auf der großen Unger Presstopfmaschine des Betriebes Natterer, Ausgesät wurde Feldsalat (Sorte Vit / Bingenheim). Die Auspflanzung war im Dezember 04.

 Tab. 4.5.1: Praxisversuch 1: Zusammensetzung der Substrate in Prozent


Substrat	KD	N1	N2	N3	N4
Kompost	30	20	20	20	20
Torf	70	64	40	40	64
Pietal		16			
Toresa			24		
Toresa (fein)			16	40	16
Bentonit		2 kg	5 kg	5 kg	2 kg


Im Folgenden ist der zeitliche Ablauf der Versuche wiedergegeben:

2528.8.03	Toresa (übliche Eco-Toresa) zur Fermentation angesetzt
612.8.04	Toresa (feine Eco-Toresa) zur Fermentation angesetzt
20.09.04	Substrate gemischt
15.10.04	Pressen und Aussaat der Erden im Betrieb Natterer
8.12.04	Auspflanzung in den Betrieben Willmann/Vaihingen und Willmann/
	Ingersheim
9.12.04	Probeernte Feldsalat aus Kisten von Natterer
Februar 05	Ernte im Betrieb Willmann/Vaihingen

Die Pressfähigkeit war bei allen Substraten mit der Kontrolle (Klasmann 70%) vergleichbar. Die Keimung des Feldsalats war ebenfalls bei allen Varianten ähnlich (Abb. 4.5.1). Bezüglich der Aufwuchsleistung lagen die beiden torfreduzierten Varianten jedoch deutlich unter den übrigen Substraten.

Die Jungpflanzen wurden in den beiden Betrieben Willmann/Vaihingen und Willmann/Ingersheim ausgepflanzt und weiterkultiviert (siehe Abbildung 4.5.2). Der Vaihinger Betrieb kultivierte den Salat im (frostfrei) beheizten Gewächshaus, der Ingersheimer Betrieb im kalten Folientunnel. Es wurden 3 (Vaihingen) bzw. 2 (Ingersheim) Wiederholungen angelegt. Der Aufwuchs war auf beiden Standorten gut. In Vaihingen wurde ein hoher Ertrag von ca. 1,8 kg Salat / m² geerntet (siehe Abbildung 4.5.3). In Ingersheim wurde der Salat ohne Ertragsbestimmung geerntet, soll aber auch in Quantität wie Qualität wenig variiert haben haben.

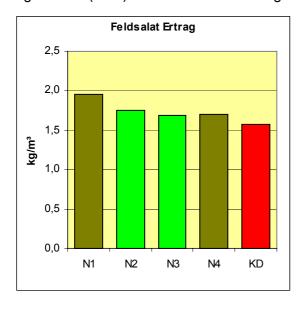


Abb. 4.5.1: Praxisversuch 1: Probepressung im Betrieb Natterer, Aufgang und Aufwuchs von Feldsalat

Abb. 4.5.2: Praxisversuch 1: Praxisanbau von Feldsalat in den Betrieben Willmann / Ingersheim (links) und Willmann / Vaihingen (rechts)

Abb. 4.5.3: Praxisversuch 1: Ertrag von Feldsalat vom Betrieb Willmann/Vaihingen

4.5.2 Test verschiedener Torf-reduzierter Substrate (PT04-2)

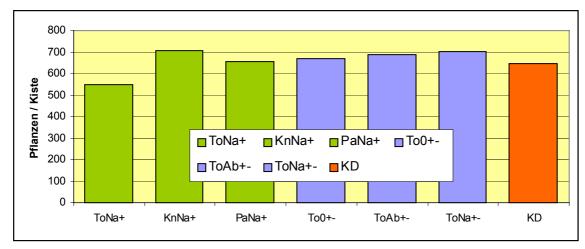
Im zweiten Versuch wurden jeweils drei Substrate aus dem Ansatz verschiedener Holzfasern (Kapitel 4.3.2; Versuch SM04-2) und verschiedener Tone (Kapitel 4.2.2; Versuch SM04-3) verglichen. Ziel war die in dem Substratsversuch 1 (siehe Kapitel 4.4.1) verglichenen Substrate auch in der Praxis zu erproben. Da es nicht möglich war alle dort untersuchten Varianten zu pressen, wurden lediglich die Hauptmischungen ausgewählt. Die Zusammensetzung der einzelnen Substrate ist in Tabelle 4.5.2 aufgelistet.

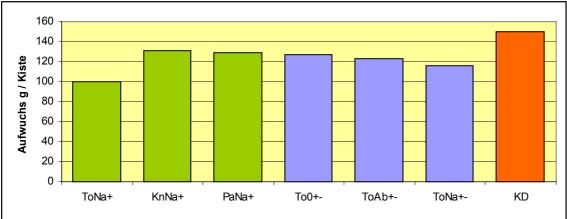
Tab. 4.5.2: Praxisversuch 2: Zusammensetzung	g der	Substrate in	Prozent
--	-------	--------------	---------

	Faser	Tonmineral		Torfgehalt	Holzfaser	Kompost
K				80%	0%	20%
N1	Nadelholz	Aktivbentonit	1 kg/cbm	40%	40%	20%
N2	Knick	Aktivbentonit	1 kg/cbm	40%	40%	20%
N3	Pappel	Aktivbentonit	1 kg/cbm	40%	40%	20%
N4	Nadelholz	ohne		40%	40%	20%
N5	Nadelholz	Agrarbentonit	5 kg/cbm	40%	40%	20%
N6	Nadelholz	Aktivbentonit	1 kg/cbm	40%	40%	20%

Die Pressung erfolgte Mitte Dezember 04, die Auspflanzung im Februar 05 im Betrieb Willmann in Vaihingen.

Im Folgenden ist der zeitliche Ablauf des Versuches wiedergegeben:


312.8.04	Mischungen zur Fermentation angesetzt
67.12.04	Substrate gemischt
15.12.04	Pressen und Aussaat der Erden im Betrieb Natterer
23.2.05	Auspflanzung im Betrieb Willmann/Vaihingen
24. 2.05	Probeernte Feldsalat der Kisten von Natterer
April 05	Ernte im Betrieb Willmann


Ergebnisse:

Auch hier war die Pressfähigkeit wiederum zufriedenstellend, obwohl durch den Ausfall eines Mitarbeiters im Betrieb Natterer sich mit der Pressmaschine insgesamt kein optimales Ergebnis erzielen ließ. Die EN-Dichte der pressfertigen Substrate lag auf einem mittleren Niveau (siehe Tabelle 4.5.3). Den höchsten Wert verzeichnete das Substrat aus Knickfaser, was wiederum auf die erhöhte Dichte der Faser selbst zurückzuführen ist. Die Rohdichte lag durchgängig um den Faktor 1,35 bis 1,45 über der EN-Dichte. Hier zeigte die Knickfaser die geringste Komprimierfähigkeit.

Tab. 4.5.3: Praxisversuch 2: Zusammensetzung der Substrate

		EN	RD	RD/EN
		g/L	g/L	
N1	ToNa+	460	641	1,39
N2	KnNa+	491	651	1,33
N3	PaNa+	444	600	1,35
N4	To0+-	439	609	1,39
N5	ToAb+-	418	605	1,45
N6	ToNa+-	434	608	1,40

Abb. 4.5.4: Praxisversuch 2: Aufgang (Pflanzen/Kiste) und Aufwuchs (Gramm/Kiste) von Feldsalat, Ernte der Anzuchtkisten vom Betrieb Natterer zum Zeitpunkt der Auspflanzung

Abgesehen von der Variante N1 (ToNa+) war die Keimung bei allen Varianten ähnlich. Die Aufwuchsleistung der verschiedenen Substrate zeigte jedoch eine stärkere Differenzierung. Alle Mischungen lagen tendenziell unter dem Vergleichsubstrat Biopotgrond. Deutlich wich wiederum die Variante N1 nach unten ab.

Es kann daher aus dem Versuch geschlossen werden, dass zwar eine gewisse Variabilität in den Substraten möglich ist und damit eine größere Breite an Entwicklungsmöglichkeiten offen steht, jedoch von der technischen Seite her auch eine gewisse Risikoanfälligkeit besteht, geht man im Torfanteil zurück.

Abb. 4.5.5: Praxisversuch 2: Feldsalat vor der Auspflanzung

Abb. 4.5.6: Salatvergleich im Betrieb Natterer

4.5.3 Vergleichsanbau torfreduzierter Substrate aus industrieller Produktion

Nachdem alle Vorversuche positiv bewertet wurden, fanden im Betrieb Natterer Vergleiche von der damals üblichen 70% Mischung mit einer torfreduzierten 50% Substratmischung auf der großen Unger Presstopfmaschine statt. Die Substrate wurden beide von der Firma Klasmann Deilmann hergestellt, die torfreduzierte nach dem Rezept des IBDF mit fermentierter Eco-Toresa Holzfaser. Im ersten Durchgang wurden verschiedene Sorten Salat (Eissalat, Batavia, Eichblatt, Kopfsalat etc.) in beiden Substraten ausgesät und praxisüblich kultiviert.

Versuch mit Salaten

Nachdem bei der Pressung keine nennenswerte Schwierigkeiten auftraten und auch anschließend im Wachstum keine Unterschiede zu erkennen waren, haben wir beschlossen, die insgesamt ca. 2000 Kisten mit alternativ angezogenen Pflanzen ohne Wissen der ca. 100 Landwirte/Gärtner auszuliefern und abzuwarten, ob irgendwelche (negativen) Rückmeldungen erfolgten. Dieses war aber nicht der Fall.

Wir haben dann 4 Betriebe ausgewählt, die größere Mengen an Jungpflanzen bekommen hatten, sodass ein Vergleich zwischen den Substraten möglich war. Die Betriebe waren

Gärtnerei Willmann / Ingersheim Bioland Agrarprodukte Müller / Steinmaur (CH)

Betrieb Hörz, Filderstadt

Betrieb Boenke/Hemhofen.

Die Betriebe wurden befragt, inwieweit die gelieferten Pflanzen bei dem Auspflanzen irgendwelche Besonderheiten zeigten. Erste skeptische Äußerungen der Betriebsleiter bewahrheiteten sich jedoch nicht. Die vermuteten Probleme waren nämlich bereits 14 Tage zuvor bei anderem Pflanzgut durch extremer Witterung bedingt aufgetreten. Diese kritische Haltung der Landwirte und Gärtner gegenüber den neuen Pflanzen war zu erwarten. Deswegen hatten wir ja auch beschlossen, die Pflanzen im sogenannten Blindversuch auszuliefern.

Abb. 4.5.7: Anbau von verschiedenen Salaten im Vergleich von 70% und 50% torfhaltigen Substraten auf Betrieb Müller, Obersteinmaur

Bei einem Besuch der Flächen auf den jeweiligen Betrieben fand dann die Entschlüsselung der gelieferten Pflanzen statt. Schließlich zeigte sich dass diese gelieferten Pflanzen keine qualitativen Unterschiede vorwiesen. In zwei Betrieben wurde die Qualität der Pflanzen sogar eher als besser bewertet, verglichen mit den restlichen Pflanzen im üblichen Substrat, die mit der gleichen Lieferung ausgepflanzt wurden. So stand im Betrieb Müller / Obersteinmaur der Eichblattsalat besonders kräftig (Abb. 4.5.7) und im Betrieb Willmann der Eissalat (Abb. 4.5.8). Eine Ertragserhebung fand nicht statt, da die Pflanzen nicht systematisch genug angebaut waren.

Hatte diese Vorgehensweise den Vorteil, dass die Betriebe unvoreingenommen die Pflanzen als "übliches Pflanzgut" behandelten und nicht von vorne herein sie negativ bewerteten, so war doch der Nachteil, dass in mindestens einem der Betriebe nicht mehr nachvollziehbar war, welche Pflanzen in welchem Substrat standen. Ein nächster Test sollte daher nicht mehr als Blindversuch durchgeführt werden.

Abb. 4.5.8: Anbau von verschiedenen Salaten im Vergleich von 70% und 50% torfhaltigen Substraten auf Betrieb Willmann, Ingersheim

Abb. 4.5.9: Vergleichsaus-saat von Fenchel in 70% (gelb) und 50% (rot) torfhaltigen Substraten

Versuch mit Fenchel

In einem weiteren Durchgang wurden auch andere Pflanzen als Salat in die beiden Substrate ausgesät, die empfindlicher reagieren können. Hierzu gehörte auch Fenchel (Abb. 4.5.9). Da keiner der Anbauer eine ausreichend große Menge an Fenchel bestellt hatte, um einen Vergleichsversuch machen zu können, wurde auf eine Befragung der Landwirte verzichtet. Es gab aber auch keine negativen Rückmeldungen seitens der Landwirte.

Versuch mit Kohlrabi

Ein weiterer Pressvergleich fand mit Kohlrabi, Salat und anderen Gemüsen im Betrieb Bärtele/Reichenau statt. Die Jungpflanzen wurden u.a. im Betrieb Biotta in Kreuzlingen im Vergleichsanbau ausgepflanzt. Die Pflanzen standen unabhängig vom verwendeten Substrat mit gleichmäßigem Wuchs da. Auch dieser Versuch wurde nicht ertragsmäßig ausgewertet.

Abb. 4.5.10: Vergleichsanbau von Kohlrabi in 70% und 50% torfhaltigen Substraten im Betrieb Biotta Kreutzlingen

Abb. 4.5.11: Vergleichsanbau von Endiviensalat in 70% (rechts) und 50% (links) torfhaltigen Substraten im Betrieb Bauer / Winden

Versuch mit Endiviensalat

In diesem Versuch wurden die Pflanzen wiederum im Betrieb Natterer gepresst und angezogen. Für einen Vergleichsanbau wurden eine größere Anzahl Kisten mit Endiviensalat ausgesät. Schließlich mussten geeignete Betriebe gefunden werden, die mit der Auspflanzung der Vergleichs-Varianten zurecht kommen konnten. In diesem Fall wussten also die Betriebsleiter bescheid, dass sie zwei unterschiedliche Substrate erhielten, nicht jedoch, welche Kisten 50% bzw. 70%-Pflanzen enthielten. Die Kisten waren lediglich farbig sortiert, damit sie nicht vertauscht werden konnten.

An diesem Versuch beteiligten sich die folgenden Betriebe:

Gärtnerei Willmann / Vaihingen (Enz) Betrieb Bauer / Winden Betrieb Müller / Obersteinmaur.

Nach der Auspflanzung besuchte ich dann wiederum die Betriebe und besprach mit den Betriebsleitern die Substrateigenschaften.

Weder bei der Anzucht, noch später bei der Auspflanzung konnten nennenswerte Unterschiede festgestellt werden. Auch die Gesundheit der Pflanzen im Feld zeigte keinerlei Beeinträchtigungen.

Gegen die Erntezeit wurden Probenernten auf den drei Betrieben durchgeführt. Die Erträge zwischen den Betrieben variierten stark, viel stärker, als zwischen den Substraten. Das lag unter anderem an den unterschiedlichen Anforderungen an den Salat, den die Betriebe hatten: Salat des Betriebes der Willmann war für die eigenen Läden und weitere Kundschaft bestimmt, die auch gerne größere Köpfe nahm (Abb. 4.5.12); der Betrieb Bauer erntete für den Groß-handel mit einer klaren Kopfgrößen-

Abb. 4.5.12: Vergleichsanbau von Endiviensalat in 70% (links) und 50% (rechts) torfhaltigen Substraten im Betrieb Willmann/ Vaihingen

400-700 Gramm, vorgabe von weshalb er auch den Salat relativ eng pflanzte (Abb. 4.5.11); der Betrieb Müller stellte Bleichsalat her, sodass er die größeren Endiviensalat-Pflanzen auf ein Drittel reduzierte (!) und zum relativ teuren Kilopreis verkaufen konnte (Abb. 4.5.13). Die von den drei Betrieben erreichten Erträge sind in Abb. 4.5.14 wiedergegeben. Die Streuungen zwischen den beiden Substraten sind sehr gering und statistisch nicht relevant.



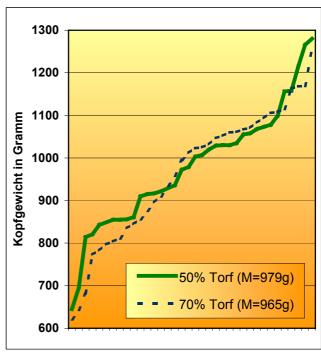

1400
1200
1200
1000
800
400
200
Willmann
Müller
Bauer
Mittel

Abb. 4.5.13: Vergleichsanbau von Endiviensalat in 70% (links) und 50% (rechts) torfhaltigen Substraten im Betrieb Müller/ Obersteinmaur

Abb. 4.5.14: Vergleichsanbau von Endiviensalat: Ertragsermittlung

Insgesamt lag das Ertragsniveau hoch. Einzelne Köpfe erreichten nicht selten ein Gewicht von 1,5 kg, unabhängig vom Substrat. Die Verteilung der Größen der Köpfe war ebenfalls vom Substrat unabhängig, was aus Abb. 4.5.15 ersichtlich wird.

Abb. 4.5.16: Vergleichsanbau von Feldsalat, Sorte Gala: Klasmann 50% Torfgehalt (links) und IBDF 50% Torfgehalt (rechts) im Betrieb Tietze / Sensfeld nach Auspflanzung (6.12.)

Versuch mit Feldsalat

In diesem Versuch wurden drei Substrate verglichen: neben den beiden bereits mehrfach verglichenen Industrieerden der Firma Klasmann Deilmann noch ein weiteres Substrat mit 50% Torf aus eigener Herstellung mit der (feineren) Holzfaser Torbo. Ausgesät wurde Feldsalat: die Sorten Gala und Granon. Die Kisten waren wiederum für den Versuchsanbau verschlüsselt gekennzeichnet, sodass die Betriebsleiter nicht wussten, welche Substrate jeweils verwendet wurden.

An diesem Versuch beteiligten sich die folgenden Betriebe:

Betrieb Gomille / Herschberg, Betrieb Tietze / Sensfeld, Betrieb Voortmann / Sinsheim Betrieb Wingerter / Maxdorf.

Auch hier waren die Streuungen im Ertrag zwischen den Betrieben deutlich größer, als zwischen den Substraten in einem Betrieb. Einerseits war die Bodengrundlage sehr unterschiedlich, zum anderen differierte die Vorfruchtwirkung und Düngung.

Abb. 4.5.17: Vergleichsanbau von Feldsalat: links: Wingerter / Maxdorf kurz nach Auspflanzung (7.12.); rechts: Betrieb Voortmann / Sinsheim während Ernte (16.3.)

Abb. 4.5.18: Vergleichsanbau von Feldsalat im Betrieb Gomille / Herschberg; Torfanteil 70% (vorne), 50% (hinten) Zeitpunkt Ernte (2.3.)

Die Erträge konnten aus terminlichen Gründen nur in zwei der vier Betriebe erfasst werden. Es wurden pro Variante mehrere Quadratmeterschnitte genommen. Die Höhe der Erträge kann Abb. 4.5.19 entnommen werden.

In Betrieb A wurden zwei Sorten angebaut: die raschwüchsige Sorte Granon und die etwas trägere Gala. Entsprechend unterschieden sich die Erträge. Lag jedoch bei der Gala-Ernte noch das Potenzial des Zuwachses bis zur Schnittreife, so war das Ertragsniveau von Betrieb B endgültig: der Salat musste geerntet werden, da er bereits zu faulen ansetzte.

Gerade für Feldsalat wird aus dem Versuch deutlich, dass ein ausreichender Ertrag nicht nur von der Jungpflanzenqualität abhängt, sondern auch von der Bodenvorbereitung und Düngung.

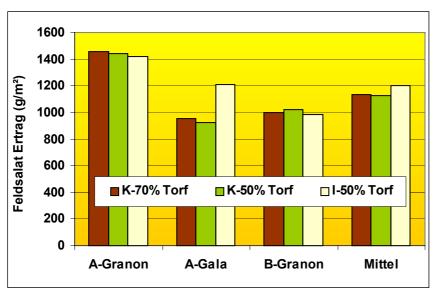


Abb. 4.5.19: Vergleichsanbau von Feldsalat: Ertragsermittlung

4.6 Umsetzung der Ergebnisse in der Praxis

Das Projekt war von vornherein so ausgerichtet, dass alle Ergebnisse unmittelbar in die großtechnische Praxis umgesetzt werden konnten. Um dies zu gewährleisten, wurden auf allen Ebenen intensive Kontakte zu den Substratherstellern wie auch den Verarbeitern gepflegt. Hierzu dienten telefonische Kontakte, aber auch Besuche vor Ort und die später erwähnten Workshops.

Faserproduzenten

Holzfaserprodukte bieten eine Reihe von Herstellern in Deutschland an. Bereits in früheren Jahren wurde daher versucht, Kontakte zu diesen herzustellen. Nur wenige zeigten damals Interesse, ihre Produktion den ökologischen Bedingungen anzupassen. Von den beiden Herstellern der Produkte Pietal und Toresa blieb schließlich nur noch die Firma Toresa übrig, nachdem der Hersteller für Pietal Insolvenz anmelden musste.

Die Kontakte zu der Firma mussten neu geknüpft werden, da der Verkauf- und Entwicklungsleiter der Firma gewechselt hatte und die bisherigen Arbeiten in meinem Projekt dem Nachfolger nicht mehr bekannt waren. Nach dem ersten Kontakt erfolgte dann aber eine gute Kooperation mit den neuen Verantwortlichen. Das für die Versuche benötigte Material wurde kostenlos zur Verfügung gestellt. Auch bestand ein großes Entgegenkommen seitens der Firma, alternative Fasern aus Material, das von mir angeliefert wurde, in der Anlage zu verarbeiten.

Wie in diesem Bericht dargestellt fanden im Sommer 2004 zwei Besuche bei **Toresa** / Lägerdorf statt, um eine für Biopresserden geeignete Holzfaser herzustellen. Dabei ging es um die Frage des Feinheitsgrades des Materials sowie um ökozertifiziertes Ausgangsmaterial aus Heckenbewirtschaftung beziehungsweise Pappel-Häcksel. Auch die spätere Herstellung von alternativen Fasern im Winter 2005 führte zu einem guten Ergebnis, wobei die Faser auf Grund einer anderen Maschineneinstellung und gröberen Ausgangsmaterials gröber ausfiel. Das zeigt, dass das Verfahren der Fa. Toresa eher für eine gröbere Qualität geeignet ist. Eine feinere Holzfaser ist zwar prinzipiell für die Pressbarkeit von Erden positiv zu bewerten, führt aber das Problem mit sich, die Struktur des Substrats zu reduzieren (besonders im Hinblick auf das Porenvolumen). Dieses Problem wurde diskutiert und führte zu der Überlegung, eine Siebanlage an die Faserproduktion zu koppeln. Im Sommer 2006 wurde dann nochmals aus Pappelholz eine Holzfaser hergestellt. Auch eine abgesiebte Version der Holzfaser aus dem üblichen Nadelholz stand für Versuchszwecke zur Verfügung.

Inzwischen bietet Toresa eine Öko-zertifizierte Holzfaser an, die auch Palettenweise abgerufen werden kann. Die einzige Schwierigkeit für eine Etablierung in der Praxis stellt nun lediglich der kostspielige Transport von Kleinmengen dar.

Im Frühjahr 2005 wurde dann Kontakt zu einem zweiten Faserproduzenten aufgenommen (Fa. Blieninger / Vilsbiburg), der ebenfalls Interesse an einer Zusammenarbeit zeigte. Die Faser "**Torbo**" wird ähnlich wie die frühere Pietal-Faser thermisch aufgeschlossen und zeigt daher einen besonders hohen Feinheitsgrad. Eine erste Faserlieferung wurde am IBDF fermentiert und stand für die Versuchsprüfung zur Verfügung. Die Pressbarkeit war ausgesprochen gut. Die Strukturstabilität ließ jedoch während der Fermentation relativ rasch nach, was auf Kosten des Porenvolumens ging.

Leider zeigte die Firma kein weiteres Interesse an einer Zusammenarbeit in diesem Projekt, so dass Fragen der Holzfaserqualität wie auch der Herkunft der Zusatzstoffe und Aufdüngung nicht weiter geklärt werden konnten.

Eine weitere Holzfaser wurde von der Firma Floragard zur Verfügung gestellt. Diese Faser war extrem fein und ähnelte eher Staub als einer der zuvor genannten Fasern. Für die

Fermentation war diese Faser weniger geeignet, jedoch kann sie in geringen Mengen als Zuschlagstoffe verwendet werden. Da wir aber in diesem Projekt negative Erfahrung mit unfermentierter Holzfaser gemacht hatten, können wir keine Verwendungsempfehlung aussprechen.

Andere Holzfasern konnten mangels Verfügbarkeit und Kapazität nicht weiter untersucht werden.

Abb. 4.6.1: fermentierte Holzfaser bei Klasmann Deilmann

Substratproduzenten

Die Zusammenarbeit mit den Substratherstellern konzentrierten sich in der Hauptsache auf die beiden Firmen **Klasmann Deilmann** und **Floragard**. Zu den anderen Substratproduzenten sind die Kontakte nicht so ausführlich. Zum einen schienen die Firmen weniger experimentierfreudig zu sein, bzw. wollten sich nicht in die Karten schauen lassen, zum anderen spielte die Bio-Produktion in einigen Firmen nur eine untergeordnete Rolle. Auch das Auftreten aus Firmensicht unlösbarer Probleme war in einem Fall nicht Anlass genug, diese zu lösen, sondern führte dazu, einer Substrat-Entwicklung aus dem Weg zu gehen.

Die Firma Klasmann-Deilmann stellte auch in diesem Projektabschnitt wiederum die notwendigen Substratbestandteile (Torf, Anzuchterde, Grünschnittkompost) kostenlos und unbürokratisch zur Verfügung. In der Zusammenarbeit wurde deutlich, dass die Ergebnisse der früheren Projektphasen schrittweise umgesetzt wurden. Hauptthema war nun die Frage der Umsetzung der bisherigen Ergebnisse in einer neuen Mischung im Werk im größeren Maßstab. Nach anfänglichem zögern wurde dann im Winter 2005 der erste Ansatz mit fermentierter Holzfaser versucht (siehe Abbildung 4.6.1), der dann im Frühjahr in einer speziellen Mischung mit 50% Torf in einem ersten Praxistest erprobt wurde. In diesem Fall wurden die Mischungsverhältnisse gemeinsam abgestimmt. Wichtig für diesen Schritt war die Bereitschaft des Jungpflanzenproduzenten Natterer / Vaihingen, die Mischung in vollem Umfang abzunehmen und zu verarbeiten. Für die darauf folgende Saison 2006 wurde eine zweite Mischung hergestellt, die dann auf Wunsch allen Jungpflanzenproduzenten probeweise zur Verfügung gestellt werden konnte. An diesem Versuch beteiligte sich u.a. wiederum der Betrieb Natterer sowie der Betrieb Bärtele / Reichenau.

Die Kooperation mit der Firma **Floragard** wurde durch mehrfachen Wechsel auf der Ebene der Verantwortlichen erschwert. Außerdem wurde mir deutlich signalisiert, dass es noch andere Möglichkeiten des Torfersatzes geben würden, worüber aber erst gesprochen

andere Möglichkeiten des Torfersatzes geben würden, worüber aber erst gesprochen werden sollte, wenn ein marktreifes Substrat vorhanden ist. Es fanden aber dennoch mehrere Besuche statt, wo Aspekte der Qualitätsoptimierung angesprochen wurden.

An den Substratscreenings beteiligten sich dann noch weitere Firmen. Es waren dies die Firmen Brill, Tref sowie Ökohum.

Will man die Erfahrungen zusammenfassen, so existiert ein Grundproblem bei der Herstellung biologischer Substrate: es ist die Qualität des von den Ökoverbänden vorgeschriebenen Kompostanteils der Erden. Da es sich der Sache nach bei den Komposten um Produkte aus der Abfallbeseitigung handelt - wenngleich auch die Grünschnittkomposte hier eine gewisse Ausnahme darstellen, da sie immer mehr auch als Rohstoff gesehen werden - variiert die Qualität je nach Jahreszeit, Ausgangsmaterial, Prozessführung etc. Viele Probleme, die im Zusammenhang mit den Substraten in dem vorliegenden Projekt auftraten, hatten ihren Ursprung in dieser Kompostkomponente. Einige Firmen versuchen nun diesen Problemen aus dem Wege zu gehen, indem sie statt Grünschnittkomposten reine Rindenhumussubstrate einsetzen. Diese können zwar während des ganzen Jahres in gleichbleibender Qualität hergestellt werden, doch wird zu ihrer Herstellung in der Regel Harnstoff verwendet. Obwohl dieser Dünger nicht der Bioverordnung entspricht, werden die Rindenhumussubstrate dennoch von einigen Bioverbänden anerkannt.

Eine Ursache hierfür liegt in der inkonsequenten Handhabung der Zertifizierung. Müssen Produkte, die auf diesem Substraten erzeugt werden, einer Zertifizierung unterworfen werden, so reicht für die Substrate selbst eine Erklärung des Herstellers, dass diese der Biorichtlinie entsprechen. Da wird dann Harnstoff zum organischer Dünger erklärt. Hier besteht dringendster Klärungsbedarf.

Will man also auf Nummer sichergehen, so sollte man nur ökozertifizierte Substrate erwerben, welche von einzelnen Substratsproduzenten angeboten werden.

Jungpflanzenproduzenten

auch in diesem Projektabschnitt galt es wiederum, die Kontakte zu den Jungpflanzenbetrieben zu intensivieren. Die intensivsten Kontakte bestanden wiederum zum Bioland-Betrieb **Natterer** / Vaihingen, der mehrere Probepressungen mit den alternativen Erden (mit Erfolg) durchführte. Insgesamt wurden in diesem Betrieb mehrere 1000 Kisten Jungpflanzen mit auf 50% Torfanteil reduzierter Erde hergestellt. Mit viel Begeisterung engagierte sich der Betriebsleiter Uli Natterer in diesem Projekt, was sich dann auch auf Substrathersteller übertrug. Gerade an diesem Beispiel wurde deutlich, wie wichtig es ist, wenn die betroffenen Produzenten von Jungpflanzen den Substraten Produzenten gegenüber mit dem klaren Ziel

der Torfreduzierung auftreten.

Im Februar 2006 war das Projekt beim Tag der offenen Tür im Betrieb Natterer mit einem Info-Stand vertreten (siehe Abbildung 4.6.2). Es fanden viele Gespräche mit den Kunden zu dem Thema Torfersatz statt. Durchgehend wurde der Schritt zum Torfersatz als positiv beurteilt.

Abb. 4.6.2: Infostand beim Tag der offenen Tür im Betrieb Natterer

Inzwischen verwendet der Betrieb Natterer routinemäßig eine Bio-Presserden, die lediglich 60% Torf enthält. Als Torfersatz dient Grünschnittkompost und die fermentierte Holzfaser von Toresa.

Auch fanden wiederum Besuche auf dem Bioland-Betrieb **Bärtele** / Reichenau statt. Der dortige Betriebsleiter begleitet ebenfalls mit großem Interesse das Projekt und erklärte sich auch bereit, Test-Substratlieferungen zu erproben. In einem Gespräch wurde unter anderem die Möglichkeit der Einführung des torffreien Substrates bei Jungpflanzen in Topfkulturen für Gartencenter besprochen, eine neue Möglichkeit, die sich für diesen Betrieb eröffnet hatte und eine gewisse Wende in der Billig-Produktion ankündigt: auch über die Supermarktschiene kann eine hochwertige Qualität zu guten Preisen vermarktet werden.

Außerdem wurden noch die Betriebe **Hohmann** (Bioland), **Wunderlich** (Naturland) und **Stefan** (Demeter) besucht. Bis auf einen Betrieb fanden alle die Möglichkeit des Torfersatzes interessant, wollten sich selbst aber nicht an den Experimenten beteiligen. Wenn das Substrat dann erhältlich ist, wären sie aber bereit, dieses mit einzusetzen.

Landwirtschaftliche / gärtnerische Betriebe

Wie zuvor bereits erwähnt, wurde mit einigen Praxisbetrieben direkt kooperiert, um eine Rückmeldung über die Substratqualität auch aus der Praxis zu erhalten. Dabei wurden die Betriebe entweder direkt um Mitarbeit gebeten, um die unterschiedlichen Mischungen zu prüfen, indem sie Pflanzen bekamen, die parallel in den verschiedenen Substraten angebaut waren, oder aber die Versuche wurden blind durchgeführt und die Betriebe erst anschließend befragt.

Kooperationspartner waren die folgenden Betriebe (mit angebauten Kulturen):

Gärtnerei Heydenmühle / Otzberg (Demeter): Feldsalat

Gärtnerei Willmann / Vaihingen (Demeter): Feldsalat, Fenchel, Kopfsalate, Endivien

Gärtnerei Willmann / Ingersheim (Demeter): Feldsalat, Fenchel, Kopfsalate, Endivien

Bioland Agrarprodukte Müller / Steinmaur (Knospe): Kopfsalate, Endivien

Gemüsebau Bauer/Winden (Bioland): Endivien, Kopfsalate

Gemüsebau Hörz / Filderstadt (Bioland): Kopfsalate

Biotta/Kreutzlingen (Knospe): Kohlrabi, Kohl, Salate

Gomille/Herschberg (Bioland): Feldsalat,

Tietze/Sensfeld (Naturland): Feldsalat,

Voortmann/Sinsheim (Demeter): oder über Feldsalat.

Die Ergebnisse sind zuvor in den jeweiligen Kapiteln beschriebenen. Von den landwirtschaftlichen bzw. gärtnerischen Betrieben wurde das Projekt i.d.R. als positiv aufgenommen. Die Pflanzenqualitäten mit 50 % Torfersatz waren durchweg als gleichwertig beurteilt worden. Bei einigen Betrieben konnten auch die beschriebenen Probeernten durchgeführt werden.

Diskussionsforen, Seminare

die Arbeit des Projektes wurde durch verschiedene Diskussionsforen und andere seminaristische Tätigkeiten begleitet.

Im Herbst 2004 wurde ein Diskussionsforum als Austauschplattform zwischen den am Projekt Beteiligten durchgeführt. Es kamen 15 Teilnehmer. Das Hauptanliegen des Treffens war es, sich einen Zeitrahmen vorzugeben, in dem die Substratproduzenten einen ersten Umsetzungsversuch der bisherigen Erfahrungen mit torfreduzierten Erden in Angriff nehmen sollten. Hier wurde besonders durch Herrn Natterer nochmals betont, dass ja der Torf nicht die ideale Struktur in den Substratballen bewirken würde, dass die Frage der Struktur sogar eher in den neuen Erden des IBDF befriedigend wäre. Die Suche nach einer besseren

Qualität war wohl schließlich der Ausschlaggebende Punkt, der zu den oben geschilderten Testansätzen führte.

Ebenfalls im Herbst 2004 wurde die Möglichkeit des reduzierten Torfeinsatzes in dem verbandsübergreifenden ÖKOmenischen Gartenbauseminar erörtert.

Im Frühjahr 2005 wurde das Projekt auf der achten Wissenschafts Tagung für ökologische Landbau in Kassel vorgestellt und diskutiert (KÖNIG 2005a).

Dazu kam die Präsentation beim Tag der offenen Tür im Betrieb Natterer wie auch bei der Internationalen biologisch-dynamischen Tagung in Dornach im Frühjahr 2006 (KÖNIG 2006).

Nach Beendigung des Projektes wurde die Reihe der Informationsveranstaltungen fortgesetzt. So wurde das Projekt zweimal im Rahmen einer Tagung von Bio Austria, der österreichischen Dachorganisation des ökologischen Landbaus, vorgestellt (KÖNIG 2007). Auch fand eine umfangreiche Ausstellung bei einer weiteren Internationalen biologischdynamischen Jahrestagung in Dornach statt. Dazu kamen mehrere Vorträge und Seminare in den Regionen und nicht zuletzt neuerdings die noch andauernde Reihe der Workshops im Rahmen des Wissenstransferprogramms des BLE.

Die Reihe der schriftlichen Veröffentlichungen ist der weiter unten angeführten Literaturaufstellung zu entnehmen (KÖNIG 2003-2007).

Immer wieder führten diese Veranstaltungen zur Nachfrage nach der fermentierten Holzfaser, da insbesondere die kleineren Gemüsebaubetriebe ihre eigenen Substrate herstellen wollten. In der Regel scheiterte jedoch die Lieferung an den im Einzelfall zu hohen Transportkosten. Daran wird deutlich, dass dringend ein überregionales Vertriebsnetz aufgebaut werden muss.

5 ERREICHTE ZIELE - OFFENE FRAGEN

Torfersatz im Substrat: Die Möglichkeit, mit fermentierten Holzfasern einen Teilersatz von Torf in der Praxis zu verwirklichen, ist in diesem Projekt gelungen. Der Torfgehalt konnte durch fermentierte Holzfaser auch im großtechnischen Einsatz von Bio-Presserden bis auf 50% gesenkt werden.

Als einziger Anbieter kann bei der Firma Klasmann-Deilmann ein derartiges Bio-Substrat bezogen werden. Substrate mit anderen Torfersatzstoffen schnitten beim Pressen hingegen mehrfach schlechter ab.

Um die Substrate auch im großen Stil in der Praxis einführen zu können, bedarf es noch eines flächendeckenden Verkaufssystems, so dass die Transportkosten minimiert werden können. Die Nachfrage seitens der Gärtnereien wächst jedenfalls diesbezüglich.

Holzfaser: Ökozertifizierte Holzfaser ohne die sonst übliche mineralische Aufdüngung (Harnstoff) wird derzeit von der Firma Toresa angeboten. Die mit Grünschnittkompost fermentierte und mit Hornmehl stabilisierte Toresa-Faser kann ebenfalls durch die Firma Klasmann-Deilmann bezogen werden. Somit stehen auch für den eigenen Bedarf der kleineren Gärtnereien die notwendigen Ausgangsmaterialien zur Verfügung, die als Torfersatz eingesetzt werden können.

Ob durch Grünschnitthäcksel hergestellte Holzfaser aus dem Ökoanbau eine kostengünstige und ökologisch zertifizierte Alternative zu der üblichen Holzfaser werden kann, konnte im Rahmen des Projektes noch nicht endgültig erarbeitet werden. Jedenfalls stellte die Holzfaser aus Pappel eine gute Alternative zur Holzfaser aus Nadelholz dar.

Die N-Stabilisierung der Faser kann über Hornmehl während der Fermentationsperiode erfolgen, sodass keine nennenswerte N-Festlegung bei den Kulturen festzustellen war.

Reifequalität: Dass die Qualität der Biosubstrate nicht optimal sein kann, wenn verschiedene organische Zuschlagstoffe erst unmittelbar vor der Auslieferung und (sofort anschließenden) Pressung zu einem Substrat gemischt werden, hat sich als Problem konkretisiert. Durch die Einrichtung einer Reifelagerung vor dem Verkauf kann die Holzfaser ebenfalls ihre Fermentation durchmachen. Auch weitere Zuschlagstoffe können hier appliziert werden, sodass das Substrat "zusammenwächst". Gesundheitliche Probleme bei der Jungpflanzenanzucht können so auf ein Minimum begrenzt werden.

Auch die Wahl der mineralischen Zuschlagstoffe (Bentonit, Gesteinsmehl) ist von Bedeutung, will man nicht nur zu einer Verdichtung der Substrate beitragen. So recht ein Bruchteil des Tones in Form des Bentonit, verglichen mit einem weniger aktiven Lagerstättenton.

Eine weitere Frage ist die Möglichkeit nach einem frühzeitigen Erkennen von negativen Substrateinflüssen, insbesondere bei neuen Substratkomponenten oder deren Chargen. Hier hat sich die Möglichkeit aufgetan, eine Schnelldiagnose der Gasphase von Substraten mittels einer sogenannten elektronischen Nase zu stellen. Da jedoch diese Methode im vorliegenden Projekt nicht untersucht werden konnte, steht eine Eichung dieser Methode noch aus.

Richtlinienrelevanz: Die Bio-Verbände konnten sich bislang noch nicht dazu durchringen, eine Verringerung des Torfanteil des in ihren Richtlinien vorzuschreiben. Nach dem Ergebnis des Betriebes Natterer, indem seit 2007 Substrat mit lediglich 60% Torfanteil zur Anwendung kommt, könnte wiederum ein Anlauf unternommen werden, zumindest bei Demeter die 60% Grenze einzuführen.

Interessant ist in dem Zusammenhang, dass England derzeit eine stufenweise Reduzierung des Torfanteils auch für den konventionellen Bereich vorschreibt.

6 LITERATUR

- Abele, U. (1987): Produktqualität und Düngung mineralisch, organisch, biologischdynamisch. Angewandte Wissenschaft 345, Münster-Hiltrup
- Bachinger, J. (1996): Der Einfluss unterschiedlicher Düngungsarten (mineralisch, organisch, biologisch-dynamisch) auf die zeitliche Dynamik und die räumliche Verteilung von bodenchemischen und -mikrobiologischen Parametern der C- und N-Dynamik sowie auf das Pflanzen- und Wurzelwachstum von Winterroggen. Diss. Univ. Gießen. Schriftenreihe Bd. 7, Inst. f. biol.-dyn. Forschung, Darmstadt
- BGK (1998): Methodenbuch zur Analyse von Kompost. BGK-Nr. 222. 4. Aufl., Köln
- Bioland (2001): Bioland Richtlinien für den Erzeugungsbereich. http://www.bioland.de/bioland/richtlinien/erzeuger-richtlinien.pdf
- Forschungsring f. Biol.-Dyn. Wirtschaftsweise (2000): Qualitäts-Leitlinien für die großtechnische Herstellung von Anzuchterden, die für die Verwendung auf Demeter-Betrieben zugelassen sind. Darmstadt
- Fuchs, J.G. und Bieri, M. (2000): Neue Pflanzentests, um die Kompostqualität zu charakterisieren. Agrar-Forschung 7(7): 314-319
- Grantzau, E., B. Schäfer, M. Rest (2003): Moderne Substrate erfordern Anpassung. Taspo Magazin 2/2003, 48-50
- Grüter, A. (2001): Test von Anzuchterden für den ökologischen Landbau unter besonderer Berücksichtigung der Torfproblematik. Diplomarbeit FH Bingen, FB Umweltschutz
- Heinze, K. (2001): Kompostsubstrate: zu empfehlen! Bioland 5/2001, 34 f
- König, U.J. (1996): Zwischenfruchtanbau von Leguminosen. Verfahren zur Minimierung der Nitratausträge und Optimierung des N-Transfers in die Folgefrüchte. Abschlußbericht BML. Schriftenreihe Inst. f. Biol.-Dyn. Forschung Bd. 6. Darmstadt
- König, U.J. (2001): Entwicklung einer großtechnisch einsetzbaren biologisch-dynamischen Anzuchterde. Arbeitsbericht 2000, 11-14
- König, U.J. (2002a): Entwicklung einer großtechnisch einsetzbaren biologisch-dynamischen Anzuchterde. Arbeitsbericht 2001, 36-40. Darmstadt. http://www.ibdf.de
- König, U.J. (2002b): Entwicklung einer großtechnisch einsetzbaren biologisch-dynamischen Anzuchterde. Lebendige Erde, Heft 2/02, 43-45
- König, U.J. (2003a): Entwicklung einer großtechnisch einsetzbaren biologisch-dynamischen Anzuchterde. Arbeitsbericht 2002, 28-33. Darmstadt. http://www.ibdf.de
- König, U.J. (2003b): Entwicklung von großtechnisch einsetzbaren torffreien bzw. reduzierten Anzuchterden. Poster 7. Wissenschaftstagung zum Ökologischen Landbau, Wien
- König, U.J. (2003c): Entwicklung von großtechnisch einsetzbaren torffreien bzw. reduzierten Bio-Anzuchterden. In: Freyer, Bernd: Beiträge zur 7. Wissenschaftstagung zum Ökologischen Landbau, Wien. 595-596
- König, U.J. (2004): "Verbesserte Erden für gesündere Jungpflanzen". Vortrag während des "ÖKOmenischen Gartenbau-Seminars" der Verbände Bioland, Demeter und Naturland am 1.12.04 in Hesselberg
- König, U.J. (2004): "Ein Kuhhorn im Boden Biologisch-dynamische Forschung". Hinweis auf das Anzuchterden-Projekt im Rahmen der Sendung "Service: Natur" des Hessischen Rundfunks am 6.11.04
- König, U.J. (2004): "Torfersatz bei Bioanzuchterden". Jahresbericht 2004 des IBDF, 6-7 (auch im Internet als Download)

- König, U.J. (2005): "Einfluss unterschiedlicher N-Quellen für die N-Stabilisierung von als Torfersatz eingesetzter Holzfaser auf die Pflanzenentwicklung im Feldgemüseanbau". Posterbeitrag bei der 8. Wissenschaftstagung Ökologischer Landbau vom 1.-4.3.05 in Kassel; Tagungsband, 97-98
- König, U.J. (2005): "Anzucht mit weniger Torf". Bioland-Zeitschrift 10/2005, 12
- König, U.J. (2005): "Komposterden zwischen Gartenbaukunst und Handelsware". Lebendige Erde, 4/2005, 40-43
- König, U.J. (2005): "Torfersatz bei Bioanzuchterden". Jahresbericht 2005 des IBDF, 19-20 (auch im Internet als Download)
- König, U.J. (2006): "Torfersatz bei Bioanzuchterden". Poster / Präsentation.
- König, U.J. (2007): Torfersatz bei Biopresserden. Das Taspo Magazin 5/2007, 9-11
- König, U.J. (2007): Torffreie und torfreduzierte Substrate im Gemüsebau. In: 1. Bio-Austria Gemüsetage 2007, 51-57
- Leopold, J. (2002): Qualitätsleitlinien für die großtechnische Herstellung von Anzuchterden, die für die Verwendung auf DEMETER-Betrieben zugelassen sind. Forschungsring für Biologisch-Dynamische Wirtschaftsweise e.V., Darmstadt
- Raupp, J. (editor) (1999): Fertilization Systems in Organic Farming Based on Long-Term Experiments. Final Report of the Concerted Action Fertilization Systems in Organic Farming (AIR3-CT94-1940); Publ. Institute for Biodynamic Research, Darmstadt, vol. 11

7 ANHANG

7.1 Anhang A: Substratherstellung

SM04-1 (1. Faserherstellung)

VarianteAusgangsmaterialKN-afAltes Häcksel (Kommunalschnitt); feine AussiebungKN-agAltes Häcksel (Kommunalschnitt); grobe AussiebungKN-alAltes Häcksel (Gartenhäcksel)KN-flFrisches Häcksel (Gartenhäcksel)TO-ef"Toresa Eco" feinTO-eg"Toresa Eco" grob

20 % Grünschnittkompost 5 kg/m³ Agrarbentonit 5 kg/m³ Hornmehl (Manna)

Varianten: 6

Ansatz: 08.-09.07.2004; Kleinsilos 120 L

SM04-1a (Zusatzmischung Pietal)

Pietalfaser (Herstellung 2002) 20 % Grünschnittkompost 5 kg/m³ Hornmehl (Manna) präpariert / unpräpariert

Varianten: 2

Ansatz: 05.-16.07.2004; Großsilos ca. 1 m3

SM04-2 (2. Faserherstellung)

Ausgangsmaterial: Faser aus

Nadelholz (Toresa; Rinden-frei) Knick (ca. 50 % Ahorn)

Pappel

20 % Grünschnittkompost 1 kg/m³ Aktivbentonit 5 kg/m³ Hornmehl (Manna)

präpariert

Varianten: 3

Ansatz: 03.-06.08.2004; Großsilos ca. 1 m3

SM04-3 (Zuschlagversuch)

Ausgangsmaterial: Faser aus

Nadelholz (Toresa; Rinden-frei)

20 % Grünschnittkompost 5 kg/m³ Hornmehl (Manna) Zuschlag-Varianten:

ohne Bentonit

5 kg/m³ Agrarbentonit

1 kg/m³ Aktivbentonit

präpariert / unpräpariert

Varianten: 6

Ansatz: 06.-12.08.2004; Großsilos ca. 1 m³

SM05-1 (3. Faserherstellung)

Ausgangsmaterial: Faser aus

Nadelholz (Toresa; Rinden-haltig; frisch) Nadelholz (Toresa; Rinden-frei; 1 Jahr alt) Knick (ca. 50 % Weißbuche, 30 % Ulme)

Pappel

20 % Grünschnittkompost 5 kg/m³ Agrarbentonit 4 kg/m³ Hornmehl (Oscorna) präpariert / unpräpariert

Varianten: 8

Ansatz: 30.03.-06.04.2005; Großsilos ca. 1 m³

SM05-1a (alternative Faser)

Ausgangsmaterial: Faser aus Nadelholz (Fa. Blieninger) 20 % Grünschnittkompost 5 kg/m³ Agrarbentonit 4 kg/m³ Hornmehl (Oscorna) präpariert / unpräpariert

Varianten: 2

Ansatz: 22.-23.06.2005; Großsilos ca. 1 m3

SM05-2 (für N-Festlegung)

Ausgangsmaterial: Faser aus

Nadelholz (Torbo und Toresa)

20 % Grünschnittkompost

5 kg/m³ Agrarbentonit

4 kg/m³ Hornmehl (Oscorna)

präpariert

3 Feuchtestufen trocken, feucht, nass (0, 5, 10 Vol% Wasserzusatz)

Varianten: 3

Ansatz: 2.-4.08.2005; Großsilos ca. 1 m³

SM05-3 (für Pressvergleich Natterer und AV05-2)

Ausgangsmaterial: Faser aus Nadelholz (Torbo) 20 % Grünschnittkompost 5 kg/m³ Agrarbentonit 4 kg/m³ Hornmehl (Oscorna) präpariert

Varianten: 1

Ansatz: 5.08.2005; Großsilo ca. 2 m³

Mischung: 4.-5.10.2005

Pressung: 10.10. und 1.11.2005

7.2 Anhang B: Praxistests

PT04-1 (Versuch Natterer 1)

Zusammensetzung der Substratmischungen:

	Substrat N0	Substrat N1	Substrat N2	Substrat N3	Substrat N4
Kompost	30	20	20	20	20
Torf		64	40	40	64
Pietal		16			
Toresa (alt)			24		
Toresa (neu)			16	40	16
Bentonit		2 kg	5 kg	5 kg	2 kg

25.-28.8.2003 Toresa (alt) zur Fermentation angesetzt (mit 20 % Kompost) 6.-12.8.2004 Toresa (neu) zur Fermentation angesetzt (mit 20 % Kompost)

Substrate gemischt (Torfersatz mit Klasmann-Erde Bio-

20.09.2004 Potgrond)

PT04-2 (Versuch Natterer 2)

Zusammensetzung der Substratmischungen:

	Faser	Tonmineral		Torfgehalt	Holzfaser	Kompost
K				80%	0%	20%
N1	Nadelholz	Aktivbentonit	1 kg/cbm	40%	40%	20%
N2	Knick	Aktivbentonit	1 kg/cbm	40%	40%	20%
N3	Pappel	Aktivbentonit	1 kg/cbm	40%	40%	20%
N4	Nadelholz	ohne		40%	40%	20%
		Agrarbentoni		400/	400/	000/
N5	Nadelholz	t	5 kg/cbm	40%	40%	20%
N6	Nadelholz	Aktivbentonit	1 kg/cbm	40%	40%	20%

PT04-3 (Versuch Heydenmühle)

Zusammensetzung der Substratmischungen siehe AV04-1

BV05-1 Versuch mit Feldsalat (PT04-2; Versuch Natterer 2)

Praxistest von Substraten des IBDF im Betrieb Natterer mit anschließender Auspflanzung.

Betrieb: Willmann/Vaihingen

Aussaat: 15.12.2004; Auslieferung ca. 8. Woche; Besichtigung der Versuche am 24.2. (Natterer)

Probeernte Anzuchtkisten (24.2.2005)

BV05-2 Versuch mit Salaten

Praxistest von Substraten der Fa. Klasmann im Betrieb Natterer mit anschließender Auspflanzung.

Zusammensetzung der Substrate:

	KI-70	KI-50
Kompost	23,6	30,8
Holzfaser	6,4	19,2
Torf	70	50

Betriebe: Willmann/Ingersheim, Schloß Hemhofen, Hörz, Müller

Aussaat: 15. Woche; Auslieferung 17. Woche;

Besichtigung der Versuche am 22.4. (Natterer) und 27./28.5.2005 (Betriebe)

BV05-3 Versuch mit Fenchel

Praxistest von Substraten der Fa. Klasmann im Betrieb Natterer mit anschließender Auspflanzung.

Zusammensetzung der Substrate: wie BV05-2

Betriebe: Willmann/Vaihingen, u.a.

Aussaat: ca. 20. Woche; Auslieferung 22. Woche;

Besichtigung der Versuche am 27.5. (Natterer); keine Betreuung der Betriebe, da zuwenig Kisten pro

Betrieb

BV05-4 Versuch mit Kohlrabi u.a.

Praxistest von Substraten der Fa. Klasmann im Betrieb Bärthele mit anschließender Auspflanzung. Zusammensetzung der Substrate in %:

	KI-70	KI-50
Kompost	30	30
Holzfaser	0	20
Torf	70	50

Betriebe: Biotta u.a.

Aussaat: ca. 30. Woche; Auslieferung ca. 33. Woche; Besichtigung der Versuche am 7.9.2005 (Betrieb)

BV05-5 Versuch mit Endivien

Praxistest von Substraten im Betrieb Natterer mit anschließender Auspflanzung.

Zusammensetzung der Substrate wie BV05-4 Betriebe: Willmann/Vaihingen, Bauer, Müller

Aussaat: ca. 30. Woche; Auslieferung ca. 33. Woche;

Besichtigung der Versuche am 5.8. (Natterer) und 7.-8.9.2005 (Betriebe)

Probeernten: 10.10. Willmann

25.10. Müller 14.11. Bauer

BV05-6 Versuch mit Feldsalat

Praxistest von Substraten im Betrieb Natterer mit anschließender Auspflanzung. Zusammensetzung der Substrate in %:

	KI-70	KI-50	IBDF-50
Kompost Holzfaser	30	30	20
Holzfaser	0	20	30
Torf	70	50	50

Betriebe, Sorten und Anzahl Kisten:

Sorte	G	ala			Gr	anon		
Substrat		G1	G2	G3		1	2	3
		Klasm. 70	Klasm. 50	IBDF 50		Klasm. 70	Klasm. 50	IBDF 50
	Gesamt				Gesamt			
Anzahl Kisten	139	65	50	24	270	144	90	36
Gomille	40	17	15	8	30	10	10	10
Tietze	50	22	20	8				
Voortmann					85	45	30	10
Wingerter					154	88	50	16

Aussaat: 10.10.; Auslieferung ca. 46. Woche;

Besichtigung der Versuche am 25.10. (Natterer) und 6.-8.12.2005 (Betriebe)

Probeernten: März 06

7.3 Anhang C: Varianten und Ergebnisse der Versuche

Tab. A-1: AV04-1, Test von Zuschlagstoffen; Bodenparameter

	El	N-Dicht	е		Pres	ssen			nach	Ernte	
	FG	TS	TG	NH4	NO3	Nmin	TS	NH4	NO3	Nmin	TS
Var.	g/l	%	g/l		mg/100g		%		mg/100	g	%
1				9,87	0,0	9,9	27,9	0,33	5,6	5,9	32,1
2	366	36,2	133	6,16	13,3	19,5	35,2	0,30	17,5	17,8	36,6
3	280	39,8	111	1,82	23,4	25,2	31,7	0,54	17,2	17,8	37,4
4	256	41,8	107	3,92	9,5	13,4	32,2	0,44	13,1	13,6	37,6
5	294	39,8	117	0,98	31,3	32,3	34,9	0,58	20,0	20,6	36,1
6	287	39,0	112	6,86	12,2	19,0	38,0	0,54	15,0	15,5	36,4
7	309	39,1	121	6,09	19,5	25,6	35,7	0,54	20,0	20,5	36,4
8	319	37,8	121	1,26	31,9	33,1	32,9	0,84	18,8	19,6	35,8
9	319	37,3	119	5,67	9,4	15,1	30,8	0,65	15,4	16,1	36,8
10	325	38,9	126	0,42	37,3	37,7	31,0	0,51	18,6	19,1	34,0
11	240	43,3	104	1,68	22,1	23,7	35,6	0,72	11,1	11,8	36,8
12	300	39,5	118	6,58	17,9	24,5	37,7	0,54	18,5	19,0	37,0
13	303	38,8	118	6,37	12,7	19,0	32,5	0,51	11,7	12,3	35,5
14	366	36,3	133	5,95	14,9	20,9	31,1	0,47	17,1	17,5	37,0
15	258	42,7	110	6,58	17,9	24,5	33,1	0,51	15,4	15,9	35,3
16	289	40,4	117	4,27	15,3	19,5	36,0	0,47	15,5	16,0	38,9
17	271	42,9	116	3,85	27,7	31,6	33,3	0,47	17,4	17,9	35,2
18	274	41,5	114	0,56	27,5	28,1	34,4	0,65	16,8	17,4	35,8
19	282	43,3	122	1,26	17,9	19,1	32,1	0,58	10,8	11,4	34,3
20	298	42,5	127	6,65	9,6	16,2	33,4	0,47	14,7	15,2	36,8
21	287	43,4	125	5,04	8,6	13,7	33,6	0,40	7,6	8,0	37,6
22	296	43,1	127	0,56	15,5	16,1	33,9	0,42	6,3	6,7	34,0
23	283	43,3	123	4,27	5,3	9,6	33,7	0,40	8,2	8,6	
24	296	43,1	127	0,56	30,0		31,2	0,26	12,3	12,5	34,2
25	301	43,4	131	2,38	17,3	19,7	33,0		9,4	9,6	

Tab. A-2: N-Immobilisierungsversuch

Ammonnitrat

		NH4	NO3	N min	NH4	NO3	N min	NH4	NO3	N min	
Erde	Var	0 Tage mgN/100g				7 Tage		14 Tage			
						mgN/100g	mgN/100g				
Schwarztorf	1	8,8a	5,46	14,23a	11,34b	8,3a	19,6	14,14b	8,5a	22,6a	
Feuchterde1	2	15,8b	3,59	19,37b	0,98a	20,5b	21,5	0,84a	20,6b	21,4a	
Feuchterde2	3	15,5b	2,85	18,39b	1,61a	20,2b	21,8	0,91a	20,7b	21,6a	
Feuchterde3	4	15,3b	3,17	18,48b	0,91a	17,9b	18,8	0,98a	27,6c	28,6b	
GD 5%		2,9	ns	3,50	0,91	2,7	ns	1,74	3,0	3,3	

		NH4	NO3	N min	NH4	NO3	N min	
Erde	Var		28 Tage	•	56 Tage			
		mgN/100g mgN/100g						
Schwarztorf	1	15b	9,0a	24,4	9,7b	6,7a	16,4a	
Feuchterde1	2	1,5a	20,9b	22,3	1,3a	42,8bc	44,2bc	
Feuchterde2	3	0,8a	19,3b	20,0	0,9a	46,4c	47,3c	
Feuchterde3	4	0,9a	26,7c	27,6	0,8a	25,8ab	26,5ab	
GD 5%		5,52	5,2	ns	5,2	21,1	19,7	

Hornmehl

1101111110111								
		NH4	NO3	N min	NH4	NO3	N min	
Erde	Var		0 Tage		56 Tage			
			mgN/100	g	mgN/100g			
Schwarztorf	1	8,5a	8,2b	11,6	174,3b	12,0a	186,3	
Feuchterde1	2	15b	5,4a	11,2	4,6a	99,3bc	104,0	
Feuchterde2	3	14b	4,3a	9,8	4,7a	151,6c	156,2	
Feuchterde3	4	14b	4,8a	10,3	1,1a	54,8ab	55,9	
GD 5%		4,20	2,6	ns	93,3	75,7	ns	

NH4NO3	13,1	5,65b	18,71b	3,2	30,4a	33,6a
Hornmehl	15,4	0,00a	15,44a	46,2	79,4b	125,6b
GD 5%	ns	2,03	2,70	ns	44,4	42,5

Tab. A-3: Kressetest 1

		Substrat	Kresse
	H2O Menge	Gewicht	Af TS
Feuchtestufe	· ·	g	g
1	trocken	278a	0,271b
2	50 ml	326b	0,269b
3	100 ml	387c	0,258b
4	150 ml	425d	0,188a
GD 5%		3,8	0,038

Befeuchtung 1	4x	349a	0,265b
Befeuchtung 2	10x	359b	0,228a
GD 5%		2,7	0,027

Tab. A-4: Kressetest 2

	Substrat	Kresse
	Gewicht	Aft
Variante	g	g
Feucht 1	274,22a	0,215ab
Feucht 2	325,94f	0,234abc
Feucht 3	309,9e	0,249bc
Feucht 1 50%	296,8c	0,236abc
Feucht 2 50%	321,24f	0,266c
Feucht 3 50%	303,64d	0,251 bc
Klasmann 05	285,74b	0,201a
Substrat	305,68de	0,254 bc
GD	5,527	0,048

Tab. A-5: Kressetest 3

		Einw.			Erde		Kresse		
Var.	Faser	Glas	TS	NH4 No3		Nmin	Aschefr. T	S	
		g	%		mgN/100g	l	g	%	
1	Toresa a-	345 jk	40,5 d	0,490 abc	27,2 hi	27,7 hi	0,490 abcd	-3,9	
2	Toresa n-	347 k	40,6 d	0,490 abc	19,7 fg	20,2 fg	0,494 abcde	-3,1	
3	Knick-	352 lm	42,3 fg	0,280 a	29,8 ij	30,0 ij	0,467 ab	-8,5	
4	Pappel-	357 mn	42,0 ef	0,490 abc	26,0 h	26,5 h	0,484 abc	-5,1	
5	Pietal-	298 e	38,5 c	0,490 abc	39,4 m	39,9 lm	0,477 abc	-6,5	
6	Torbo-	341 j	46,5 m	0,560 bc	22,0 g	22,5 g	0,530 bcdefg	3,9	
7	Toresa a+	323 h	41,4 e	0,490 abc	28,7 hij	29,2 hij	0,540 bcdefg	5,8	
8	Toresa n+	353 lm	41,5e	0,560 bc	17,1 ef	17,6 ef	0,527 bcdefg	3,3	
9	Knick+	360 no	44,0 jk	0,420 ab	30,7 jk	31,1 jk	0,467 ab	-8,4	
10	Pappel+	353 lm	42,7gh	0,420 ab	33,2 kl	33,6 k	0,484 abc	-5,1	
11	Pietal+	289 d	41,8 ef	0,560 bc	9,0 b	9,6 b	0,557 defg	9,3	
12	Torbo+	297 e	45,0 l	0,560 bc	15,5 de	16,0 de	0,513 bcdef	0,6	
13	Torbo	313 g	43,7 ij	0,980 e	36,3 l	37,2 I	0,543 cdefg	6,4	
14	Feucht1	261 c	47,6 n	0,700 cd	2,9a	3,6 a	0,539 bcdefg	5,6	
15	Feucht2	307 f	38,9c	0,700 cd	4,1a	4,8 a	0,635 hi	24,5	
16	Feucht3	330 i	37,3b	0,840 de	11,0 bc	11,8 bc	0,579 fgh	13,4	
17	Faser fein	227 a	43,5 ij	0,490 abc	5,2a	5,7 a	0,663 i	30,0	
18	Flachs	251 b	35,2 a	0,560 bc	2,5 a	3,1a	0,573 fgh	12,3	
19	Fasermix	362 no	53,4 p	0,490 abc	26,0 h	26,5 h	0,438 a	-14,2	
20	Kompost	365 o	50,0 o	0,490 abc	13,9 cd	14,4 cd	0,563 efgh	10,4	
21	Toresa alt	348 kl	44,1 jk	0,420 ab	42,0 m	42,4 m	0,472 abc	-7,4	
22	Hanferde	323 h	43,1 hi	0,630 bcd	49,9 n	50,5 n	0,538 bcdefg	5,5	
23	Reste	301 e	44,6 kl	0,560 bc	27,2 hi	27,7 hi	0,597 ghi	17,0	
GD 5%		4,98	0,7	0,234	3,1	3,2	0,073		

Tab. A-6: AV04-2

	Anzahl	FG	TG	TS
	Pflanze			
Variante	n		iste	%
	1 340	199	15,8	7,93
	2 347	193	15,5	8,04
	3 343	198	15,7	7,92
	4 339	261	19,3	7,44
	5 317	170	13,7	8,15
	331	222	17,8	8,02
	7 334	239	17,1	7,21
	343	205	17,1	8,37
!	346	214	18,4	8,61
1	338	240	18,6	7,79
1	1 361	211	16,4	7,89
1:	2 345	184	14,9	8,13
1:	3 339	241	17,7	7,35
1.	4 333	228	17,6	7,74
1:	5 332	201	16,4	8,15
1	349	224	16,4	7,34
1	7 348	252	18,7	7,44
1	355	269	20,0	7,41
1	9 336	187	15,0	8,03
2	339	213	16,9	8,03
2	1 345	210	16,1	7,67
2	2 351	200	15,7	7,83
2	3 341	254	18,8	7,39
Mittelwerte Zuschlags		<u>I</u>		
+ Präparate	342,2	207,8	16,6	8,0
- Präparate	338,6	214,6	16,8	7,9
ohne Ton	338	235	17,7	7,6
Edasil	342	194	15,7	8,1
Bionit	341	204	16,7	8,2
50% Torf	336	207	16,3	7,9
	345			
30% Torf Mittelwerte	343	215	17,1	8,0
Faserarten				
Toresa	342	217	16,4	7,6
Knick	340	231	17,7	7,7
	344	227		
Pappel 50% Torf	1		17,5	7,7
50% Torf	334	223	17,2	7,7
40% Torf	338	218	16,8	7,7
30% Torf	343	226	17,2	7,6

Tab. A-7: AV05-1, Bodenparameter Pressung

Var Faser A		,				_		1
2	Var	Faser	Präpa- rate	Torf	Sand 27.07.05	Sandanteil, kg	01.08.05 mit 14	01.08.05 mit 14
2	1	To′04	0.	50	5.30 bcd	0.700 bcdef	3.480 bcd	1.820 defa
3	2		0.				†	
4		To '05						
5 Pappel o. 50 5,13 abc 0,638 bcde 3,436 abcd 1,689 bc 6 o. 30 5,01 ab 0,813 ef 3,241 ab 1,771 cde 7 Knick o. 50 5,28 abcd 0,813 ef 3,440 abcd 1,835 defg 8 o. 30 5,54d 0,625 bcde 3,412 abcd 2,126 h 9 Pietal o. 50 5,46 cd 0,550 b 3,745 ef 1,777 cde 10 o. 30 5,24 abcd 0,700 bcdef 3,416 abcd 1,776 cde 11 To '04 m. 50 5,14 abc 0,725 bcdef 3,416 abcd 1,767 cde 12 m. 30 5,21 abcd 0,650 bcdef 3,292 abc 1,767 cde 13 To '05 m. 50 5,05 abc 0,650 bcdef 3,292 abc 1,767 cde 15 Pappel m. 50 5,29 abcd 0,713 bcdef 3,343 abcd 1,997 fg 16 <					,		· · · · · ·	
6 0. 30 5,01ab 0,813ef 3,241ab 1,771cde 7 Knick 0. 50 5,28abcd 0,813ef 3,440abcd 1,835defg 8 0. 30 5,54d 0,625bcde 3,412abcd 2,126h 9 Pietal 0. 50 5,46cd 0,550b 3,745ef 1,717cd 10 0. 30 5,24abcd 0,700bcdef 3,461bcd 1,776 cde 11 To'04 m. 50 5,05ab 0,650bcdef 3,416abcd 1,776 cde 12 m. 30 5,21abcd 0,563bc 3,445abcd 1,776 cde 13 To'05 m. 50 5,05ab 0,663bc 3,445abcd 1,776 cde 14 m. 30 5,25abcd 0,875f 3,508 cde 1,867efg 15 Pappel m. 50 5,29abcd 0,673bcdef 3,343abcd 1,997fg 16 m. 50 5,29abcd		Pannel						1 1
7 Knick o. 50 5,28 abcd 0,813 ef 3,440 abcd 1,835 defg 8 o. 30 5,54d 0,625 bcde 3,412 abcd 2,126h 9 Pietal o. 50 5,46 cd 0,550 b 3,745 ef 1,771 cd 10 o. 30 5,24 abcd 0,700 bcdef 3,46 bcd 1,776 cde 11 To'04 m. 50 5,14 abc 0,725 bcdef 3,416 abcd 1,776 cde 12 m. 30 5,21 abcd 0,563 bc 3,416 abcd 1,776 cde 13 To'05 m. 50 5,05 ab 0,650 bcdef 3,292 abc 1,758 cde 14 m. 30 5,25 abcd 0,663 bcdef 3,343 abcd 1,907 fg 15 Pappel m. 50 5,25 abcd 0,663 bcdef 3,343 abcd 1,907 fg 16 m. 50 5,25 abcd 0,673 bcdef 3,343 abcd 1,907 fg 17 krick <						•		
8		Kniek				•		
9		KIIICK			· ·	,		
10	_	Dietal						
11		ir iciai			·			
12		To'04						
13		10 04					†	
Mathematics		To '05					1	
15		10 05			· · ·			
16								
17 Knick m. 50 5,49 cd 0,813 ef 3,554 de 1,934 fg m. 30 5,25 abcd 0,788 cdef 3,309 abcd 1,941 g g pietal m. 50 5,25 abcd 0,675 bcdef 3,498 cd 1,752 cde g g g g g g g g g		Pappel					1	
18			m.		·	•		1 - 1
Pietal		Knick	m.		·		' ' '	
March Marc			m.	30	5,25 abcd		3,309 abcd	<u> </u>
State		Pietal	m.		5,25 abcd			
GD 5% 0,38 0,230 0,247 0,130 To '04 50 5,22 ab 0,713 ab 3,448 bc 1,771 ab 30 5,19 ab 0,631 a 3,386 abc 1,801 abc To '05 50 5,05 a 0,675 ab 3,267 a 1,783 abc 10 50 5,14 ab 0,763 ab 3,354 abc 1,778 abc Pappel 50 5,19 ab 0,650 ab 3,390 abc 1,798 abc Roick 50 5,19 ab 0,650 ab 3,390 abc 1,798 abc Knick 50 5,38 b 0,813 b 3,497 cd 1,884 c 30 5,15 ab 0,706 ab 3,360 abc 2,034 d Pietal 50 5,36 b 0,613 a 3,621 d 1,735 a 30 5,26 ab 0,750 ab 3,462 bcd 1,800 abc GD 5% 0,26 0,163 0,172 0,107 To'04 5,20 ab 0,672 3,417 b 1,786 ab To'05 5,10 a <td>20</td> <td></td> <td>m.</td> <td>30</td> <td>5,29 abcd</td> <td>0,800 def</td> <td></td> <td>1,825 defg</td>	20		m.	30	5,29 abcd	0,800 def		1,825 defg
To '04 50 5,22 ab 0,713 ab 3,448 bc 1,771 ab 30 5,19 ab 0,631 a 3,386 abc 1,801 abc To '05 50 5,05 a 0,675 ab 3,267 a 1,783 abc 10 30 5,14 ab 0,763 ab 3,354 abc 1,789 abc Pappel 50 5,19 ab 0,650 ab 3,390 abc 1,789 abc 10 50 5,19 ab 0,650 ab 3,390 abc 1,789 abc 10 50 5,19 ab 0,650 ab 3,390 abc 1,788 abc 10 50 5,19 ab 0,763 ab 3,298 ab 1,852 bc 10 50 5,38 b 0,813 b 3,497 cd 1,884 c 10 30 5,38 b 0,813 b 3,497 cd 1,884 c 10 30 5,36 b 0,613 a 3,621 d 1,735 a 10 50 5,36 b 0,613 a 3,462 bcd 1,800 abc 10 50 5,26 ab 0,719 3	21	Klasmann 80		80	5,49 cd	0,575 bcd	3,907 f	1,580 b
30 5,19 ab 0,631 a 3,386 abc 1,801 abc		GD 5%			0,38	0,230	0,247	0,130
30 5,19 ab 0,631 a 3,386 abc 1,801 abc		To '04		50	5 22 ah	0.713 ah	3.448 bc	1 771 ah
To '05 50 5,05 a 0,675 ab 3,267 ab 1,783 abc Pappel 50 5,19 ab 0,650 ab 3,354 abc 1,789 abc Pappel 50 5,19 ab 0,650 ab 3,390 abc 1,798 abc Knick 50 5,38 b 0,763 ab 3,298 ab 1,852 bc Knick 50 5,38 b 0,813 b 3,497 cd 1,884 c 30 5,39 b 0,706 ab 3,360 abc 2,034 d Pietal 50 5,36 b 0,613 a 3,621 d 1,735 a 30 5,26 ab 0,750 ab 3,462 bcd 1,800 abc GD 5% 0,26 0,163 0,172 0,107 To '04 5,20 ab 0,672 3,417 b 1,786 ab To '05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,6					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Pappel 50 5,14 ab 0,763 ab 3,354 abc 1,789 abc Pappel 50 5,19 ab 0,650 ab 3,390 abc 1,798 abc Knick 50 5,38 b 0,763 ab 3,298 ab 1,852 bc Knick 50 5,38 b 0,813 b 3,497 cd 1,884 c 30 5,39 b 0,706 ab 3,360 abc 2,034 d Pietal 50 5,36 b 0,613 a 3,621 d 1,735 a 30 5,26 ab 0,750 ab 3,462 bcd 1,800 abc GD 5% 0,26 0,163 0,172 0,107 To 04 5,20 ab 0,672 3,417 b 1,786 ab To 05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088		To '05						
Pappel 50 5,19 ab 0,650 ab 3,390 abc 1,798 abc 30 5,15 ab 0,763 ab 3,298 ab 1,852 bc Knick 50 5,38 b 0,813 b 3,497 cd 1,884 c 30 5,39 b 0,706 ab 3,360 abc 2,034 d Pietal 50 5,36 b 0,613 a 3,621 d 1,735 a 30 5,26 ab 0,750 ab 3,462 bcd 1,800 abc GD 5% 0,26 0,163 0,172 0,107 To 04 5,20 ab 0,672 3,417 b 1,786 ab To 05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate o. 5,26 0,726 3,418 1,841 a <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>							· · · · · · · · · · · · · · · · · · ·	
No. No.		Pappel						
Knick 50 5,38 b 0,813 b 3,497 cd 1,884 c 30 5,39 b 0,706 ab 3,360 abc 2,034 d Pietal 50 5,36 b 0,613 a 3,621 d 1,735 a 30 5,26 ab 0,750 ab 3,462 bcd 1,800 abc GD 5% 0,26 0,163 0,172 0,107 To'04 5,20 ab 0,672 3,417 b 1,786 ab To'05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 3							 	
Pietal 50 5,36 b 0,613 a 3,621 d 1,735 a 30 5,26 ab 0,750 ab 3,462 bcd 1,800 abc GD 5% 0,26 0,163 0,172 0,107 To'04 5,20 ab 0,672 3,417 b 1,786 ab To'05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b		Knick		50				
30 5,26 ab 0,750 ab 3,462 bcd 1,800 abc				30	5,39b	0,706 ab	3,360 abc	2,034 d
GD 5% 0,26 0,163 0,172 0,107 To 04 5,20 ab 0,672 3,417 b 1,786 ab To 05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b		Pietal		50	5,36 b	0,613 a	3,621 d	1,735 a
To '04 5,20 ab 0,672 3,417 b 1,786 ab To '05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s. n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b				30	5,26 ab	0,750 ab	3,462 bcd	1,800 abc
To'05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b		GD 5%			0,26	0,163	0,172	0,107
To'05 5,10 a 0,719 3,311 a 1,786 ab Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b		To '04			5 20 ab	0.672	3 417 b	1 786 ab
Pappel 5,17 a 0,706 3,344 ab 1,825 b Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. präparate o.								1 1
Knick 5,39 c 0,759 3,429 b 1,959 c Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b								1 1
Pietal 5,31 bc 0,681 3,542 c 1,768 a GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b							1	1 1
GD 5% 0,14 n.s 0,088 0,048 m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b							1	
m. Präparate m. 5,26 0,726 3,418 1,841 a o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b								
o. Präparate o. 5,21 0,689 3,399 1,809 b GD 5% n.s. n.s. n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b		GD 370	l					
GD 5% n.s. n.s n.s 0,030 50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b			m.					
50 5,24 0,693 3,445 b 1,794 a 30 5,23 0,723 3,372 a 1,855 b		·	0.		5,21	·		· · · · · · · · · · · · · · · · · · ·
30 5,23 0,723 3,372 a 1,855 b		GD 5%			n.s.	n.s	n.s	0,030
30 5,23 0,723 3,372 a 1,855 b		50			5.24	0.693	3.445b	1.794a
							1	1
3,000								
		- , -					- ,	.,

Tab. A-8: AV05-1, Pflanzenparameter

		Präparate		Aufgang 31.07.05	Aufgang 01.08.06	Anzahl Pfl. 31.08.05	Anzahl Pfl. 31.08.05	FG 31.08.05 netto,g
Var	Faser	Prå	Torf			(Aufgang)	(Ernte)	,9
1	To′04	0.	50	84,5 cde	90,0 bc	90,0 cd	93,5 cd	430,3 gh
2		0.	30	83,8 cde	90,8 c	90,8 d	92,5 bcd	351,3 ef
3	To′05	0.	50	85,5 cde	90,3 bc	90,3 cd	90,5 abcd	451,5h
4		0.	30	81,8 cde	90,3 bc	90,3 cd	91,8 abcd	248,8b
5	Pappel	0.	50	82,8 cde	88,8 bc	88,8 cd	88,8 abc	335,3e
6		0.	30	83,0 cde	88,3 bc	88,3 cd	93,3 cd	
7	Knick	0.	50	81,3 bcde	88,0 bc	88,0 cd	89,0 abcd	452,3 hi
8		0.	30	70,0 a	84,3 ab	84,3 bc	90,8 abcd	370,8 f
9	Pietal	0.	50	84,0 cde	88,0 bc	88,0 cd	91,3 abcd	482,3 ijk
10		0.	30	78,3 abc	87,5 bc	87,5 cd	87,8 ab	442,5 h
11	To′04	m.	50	84,0 cde	91,3 c	91,3 d	92,5 bcd	404,5 g
12		m.	30	84,0 cde	90,3 bc	90,3 cd	92,8 cd	280,3 c
13	To′05	m.	50	83,5 cde	89,3 bc	89,3 cd	93,0 cd	439,3 h
14		m.	30	70,0 ab	79,3 a	79,3 b	87,0 a	295,0 cd
	Pappel	m.	50	88,3 de	90,8 c	90,8 d	93,8 d	409,8 g
16		m.	30	81,5 cde	90,8 c	90,8 d	92,5 bcd	216,5 a
	Knick	m.	50	81,3 bcde	90,3 bc	90,3 cd	92,0 abcd	445,3 h
18		m.	30	77,3 abc	83,7 ab	83,7 bc	89,0 abcd	323,3 de
	Pietal	m.	50	89,3 e	93,0 c	93,0 d	91,5 abcd	501,3 jk
20		m.	30	76,3 abc	88,7 bc	88,7 cd	93,7 cd	512,7 k
21	Klasmann 80		80	79,0 abcd	90,3 bc	90,3 cd	92,8 cd	481,0 ij
	GD 5%			9,9	6,5	6,5	4,9	28,9
	To′04		50	84,3 cd	90,6 c	90,6c	93,0	417,4 e
			30	83,9 bcd	90,5 c	90,5 c	92,6	315,8c
	To′05		50	84,5 cd	89,8 bc	89,8 bc	91,8	445,4 ef
			30	75,9 ab	84,8 ab	84,8 ab	89,4	271,9b
	Pappel		50	85,5 d	89,8 bc	89,8 bc	91,3	372,5d
			30	82,3 bcd	89,5 bc	89,5 bc	92,9	216,5a
	Knick		50	81,3 bcd	89,2 abc	89,2 abc	90,5	448,8 ef
			30	73,7 a	84,0 a	84,0a	89,9	347,0 d
	Pietal		50	86,6 d	90,5 c	90,5c	91,4	491,8g
			30	77,3 abc	88,1 abc	88,1 abc	90,7	477,6 fg
	GD 5%			7,1	4,8	4,8	n.s	32,0
	To′04			84,1	90,6b	90,6b	92,8	366,6b
	To '05			80,2	87,3a	87,3a	90,6	358,6b
	Pappel			83,9	89,6 ab	89,6ab	92,1	294,5a
	Knick			77,5	86,6 ab	86,6ab	90,2	397,9c
	Pietal			82,0	89,3 ab	89,3ab	91,0	484,7 d
	GD 5%			n.s	2,9	2,9	n.s	17,8
	· · · · · · · · · · · · · · · · · · ·	l			<u> </u>	1 1		, , , , , , , , , , , , , , , , , , ,
	m. Präparate	m.		81,6	88,7	88,7	91,8	382,8
	o. Präparate	0.		81,5	88,6	88,6	90,9	396,1
	GD 5%			n.s	n.s.	n.s.	n.s	n.s.
	50			84,4 b	90,0b	90,0b	91,6	435,2b
	30			78,6 a	87,4a	87,4a	91,1	325,8a
	GD 5%			3,0	1,9	1,9	n.s	12,9

Tab. A-9: AV05-1, Bodenuntersuchung Ende Versuch

Var	Faser	Präpa- rate	Torf	рН	Leitfähig- keit	Salzgehalt	Trocken- substanz	Ammon- ium	Nitrat	Nmin
					μS	gKCl/l	%	maN/100a	mgN/100g	maN/100a
1	To′04	0.	50	6,0	404,8	2,1	49,3	1,3	19,1	20,4
2		0.	30	6,3	314,5	1,7	39,8	1,3	20,4	21,7
3	To′05	0.	50	6,0	342,2	1,8	42,1	1,1	15,9	17,0
4		0.	30	6,3	348,8	1,8	40,5	0,7	14,6	15,3
5	Pappel	0.	50	6,1	465,5	2,5	43,7	0,7	19,3	20,0
6		0.	30	6,4	378,0	2,0	35,3	0,8	21,2	22,1
7	Knick	0.	50	6,1	471,3	2,5	49,5	0,8	5,9	6,7
8		0.	30	6,3	425,3	2,2	41,7	0,9	19,8	20,7
9	Pietal	0.	50	5,9	448,2	2,4	53,1	2,3	18,4	20,7
10		0.	30	5,9	453,0	2,4	51,8	1,2	18,6	19,8
11	To′04	m.	50	6,0	432,5	2,3	51,1	3,0	13,8	16,9
12		m.	30	6,2	355,8	1,9	42,7	1,4	17,9	19,4
13	To′05	m.	50	5,9	369,5	2,0	43,3	1,3	16,8	18,1
14		m.	30	5,9	370,7	2,0	44,2	2,7	18,3	21,0
15	Pappel	m.	50	6,0	448,0	2,4	46,4	0,8	18,1	18,9
16	. орро	m.	30	6,2	442,7	2,3	40,8	1,6	20,8	22,4
17	Knick	m.	50	6,0	430,2	2,3	52,0	0,8	15,4	16,2
18		m.	30	6,2	417,5	2,2	42,6	1,4	20,0	21,4
19	Pietal	m.	50	5,9	474,8	2,5	56,7	3,6	20,5	24,1
20		m.	30	6,0	526,8	2,8	60,9	1,4	19,3	20,7
21	Klasmann 80		80	5,8	421,0	2,2	49,1	3,7	33,7	37,4
	GD 5%			3,3	,•	_,_	,.	O ,.		0.,.
								1	1	
	To´04		50	6,00	418,67		50,22			
			30	6,23	335,17		41,21	1		
	To '05		50	5,96	355,83					17,55
			30	6,12	359,75					18,13
	Pappel		50	6,05	456,75		45,06	1		19,45
			30	6,30	410,33		38,07			
	Knick		50	6,04	450,75		-		,	
	D		30	6,25	421,42			1		
	Pietal		50	5,88	461,50			1		
			30	5,95	489,92	2,59	56,36	1,28	18,94	20,22
	GD 5%									
	To′04			6,12	376,92	1,99	45,71	1,76	17,82	19,58
	To′05			6,04	357,79	1,89	42,54	1,45	16,39	17,84
	Pappel			6,18	433,54	2,29	41,56	1		20,83
	Knick			6,14	436,08			0,98	15,28	
	Pietal			5,91	475,71		55,63		19,20	
	GD 5%				,	,	, -	,	, -	,
					406.05	2.25	40.00	4 04	10.00	10.00
	m. Präparate	m.		6,03	426,85					
	o. Präparate	0.		6,12	405,17	2,14	44,67	1,11	17,33	18,43
	GD 5%							<u> </u>		
	50			5,99	428,70	2,26	48,72	1,58	16,32	17,90
	30			6,17	403,32	2,13	44,02	1,34	19,09	20,43
	GD 5%									

Tab. A-10: AV05-2, Bodenparameter zum Zeitpunkt des Pressens

		Ţ	ğ	па	рН	Salz	NH4	NO3	Nmin	TS	H2O	EN	RD	RD/	PD	PD/
Nr.	Var.	Torf	präp.	Firma	-	μS	m	g N / 10	00g	%	g/I EN	g/l	g/l	EN	g/L	EN
1	BI50-	50	-		5,54	527	4,6	41,4	46,0	39,7	344	571	774	1,36	1,10	1,93
2	BI50+	50	+		5,47	435	7,2	39,3	46,6	38,8	346	565	775	1,37	1,11	1,96
3	BI25-	25	-		6,03	430	5,7	40,7	46,4	35,4	378	585	816	1,40	0,98	1,68
4	BI25+	25	+		6,06	375	4,9	39,2	44,1	41,1	358	608	805	1,32	0,97	1,60
5	BIO-	0	-		6,23	560	2,7	34,4	37,0	47,7	362	693	843	1,22	0,94	1,35
6	BIO+	0	+		6,36	453	2,7	30,7	33,3	44,6	340	613	837	1,37	0,94	1,53
7	K80	80		K	5,79	251	10,6	47,1	57,7	38,5	346	562	731	1,30	1,16	2,06
8	K70	70		Κ	6,10	333	13,2	44,1	57,3	36,9	313	496	653	1,32	1,17	2,36
9	K50	50		Κ	5,54	343	7,8	51,7	59,6	35,3	345	533	698	1,31	1,07	2,00
10	F70	70		F	6,17	487	17,3	42,3	59,6	35,9	342	533	721	1,35	1,22	2,30
11	F50	50		F	6,28	681	16,7	42,5	59,2	44,3	307	551	740	1,34	1,04	1,89
12	B60	60		В	6,20	264	7,6	49,7	57,3	37,7	346	555	770	1,39	1,03	1,86
13	T70	70		Т	5,26	219	6,7	48,8	54,5	31,5	325	475	648	1,36	1,21	2,55
14	T50	50		Т	5,76	464	12,7	45,4	52,0	44,5	299	538	722	1,34	1,24	2,31
		50			5,51	481	5,9	40,4	46,3	39,3	345	568	774	1,36	1,10	1,94
		25			6,04	402	5,3	39,9	45,3	38,2	368	596	811	1,36	0,98	1,64
		0			6,29	507	2,7	32,5	35,2	46,2	352	653	840	1,29	0,94	1,44
			_		5,93	506	4,3	38,8	43,1	41,0	364	616	811	1,32	1,01	1,65
			+		5,96	421	4,9	36,4	41,3	41,5	348	595	806	1,35	1,01	1,70
		70			5,84	346	12,4	45,1	57,1	34,8	327	501	674	1,34	1,20	2,40
		50			5,86	496	12,4	46,5	56,9	41,4	317	541	720	1,33	1,12	2,07
		50	<u> </u>	l			ì									ī
					5,82	338	10,5	47,9	58,5	36,1	329	515	675	1,31	1,12	2,18
					6,22	584	17,0	42,4	59,4	40,1	325	542	731	1,35	1,13	2,09
				Т	5,51	341	9,7	47,1	53,3	38,0	314	506	685	1,35	1,22	2,43

Tab. A-11: AV05-2, Bodenparameter nach Ernte des Chinakohls bzw. Feldsalates

Chinakohl Feldsalat Aussaatkisten Pflanzung 15.3. Firma präp Torf Hq Salz NH4 NO3 Nmin TS NH4 NO3 TS NH4 NO3 TS Nmin Nmin Nr. Var. μS mg N / 100g mg N / 100g mg N / 100g 50 704 0.6 52.0 52.6 47.2 5.53 43.2 43.6 41.3 0.3 18.7 19.0 39.6 0.5 50 33,3 42.2 0,2 BI50+ 5.47 615 8.0 42,6 43,4 48,4 3,4 36.7 10.6 10,8 38,2 BI25-25 5,61 709 3,6 46,9 50.6 52,8 0.5 48,8 47,8 0,2 28,0 28,2 44,5 49,2 25 4 + 5.58 596 0.7 39,0 39,7 49.0 0.7 38.6 39.3 45.8 0,3 21.6 21,9 46,3 0 6.05 777 6,1 41,4 47,5 52.5 1,2 57,6 0,2 44,9 45,8 BIO-58.8 51.2 44.7 5,76 0,7 BIO+ 779 2,6 53,9 56.5 54.0 51,7 52,4 51,2 0,4 35,6 35,9 46,1 80 7 K 5,62 371 8,0 43,0 43,8 41,3 0.6 40.0 40.6 36.9 0,2 0.0 0,2 34,8 70 K 5,63 486 40,3 42.0 40,8 33,3 34,2 0,2 0,2 33,4 8.0 34.9 0.0 K70 1,8 21,8 K50 50 5,46 484 0.7 32,4 33,1 43,3 0,7 21,1 44.3 0,3 0.0 0,3 39,1 10 70 F 6,18 424 27,3 28,8 3,8 19,6 46,9 34,4 32,6 36,0 1,7 2,1 34,7 0.4 F 11 F50 50 6,56 625 30,3 41,0 45,5 15,9 17.7 33,6 14,9 16,3 10,7 39.6 1,4 34,3 12 B60 6,18 201 0,0 8,7 39,2 12,1 4,3 16,4 0,2 0,2 34,0 60 8.7 39.0 0.0 70 5,49 178 18,3 18,3 32,3 15,9 6,4 22,3 0,4 0,0 29,5 13 0,0 34.7 0.4 14 T50 50 5.86 406 8,1 0,0 16,8 41,9 14,5 9,2 23,8 41,9 0,4 0,0 0,4 37,8 50 5,50 659 0,7 47,3 48.0 1,9 38,3 40,2 41.8 0,3 14,6 14,9 38,9 5,59 25 652 2,2 42,9 45,1 0.6 43,7 0,3 24,8 25,1 45,4 50.9 44.3 46.8 5.91 0.9 778 4,3 47,7 52,0 54.6 55.6 51.2 0.3 40.1 40.4 45.9 5,73 730 46,8 50,2 49,9 50,6 0,3 30,5 30,7 43,3 3.4 0.7 46.8 5,60 663 46,5 50.5 0,3 22,6 43,5 1,4 45,2 1,6 41,2 42,8 46,4 22,9 35.8 70 5,77 363 15,8 20,0 35,8 15,2 35,2 8,0 0,1 32,6 14,5 29,7 0,9 50 5,96 505 13,0 14,4 30,3 10,4 16,0 41,9 0,7 5,0 5,7 37,0 26,4 485 1.2 37,6 42.0 0.3 0.0 36.3 5.54 36.3 8.0 27.2 28.0 39.6 0.3 525 28,8 7,7 F 15.2 44.0 39.9 22.3 10.7 33.1 37.8 1.5 9.2 34,5 5.68 292 13,2 17,6 37,1 15,2 7,8 23,0 33,7 0,0 38,3 0,4 0,0 0,4

Tab. A-12: AV05-2, Ernteparameter von Chinakohl (1 Zeitpunkt) und Feldsalat (3 Zeitpunkte)

	Chinakohl 7 Tag 20 Tag F								Feldsa	alat An	zuchtk	isten				Fe	Idsala	t Ausp	flanzun	ıg		
					7.Tag		20. Tag		Eri	nte	10. + 2	20.Tag		1. Ernte		2. E	rnte					
		Torf	präp	Firma	Setzl.	Setzl.	Pfl.	Pfl./	Pfl.	FG	Anz.S	Setzl.	Pfl.	Pfl./	FG	Pfl.	FG	FG	Pfl.	Pfl./	Wurz.	Wurz.
Nr.	Var.	\vdash	pr	Fin	/Kiste	/Kiste	/Kiste	Setzl.	/Kiste	g/Kiste	n/K	iste	/Kiste	Setzl.	g/Kiste	/Kiste	g/Kiste	g/Kiste	/Kiste	Setzl.	g afTG	/Spr.
1	BI50-	50	-		88	92	152	1,65	153	35,8	55,0	96,8	318	3,24	67,2	317	358	298	111	3,47	2,99	1,01
2	BI50+	50	+		88	91	152	1,68	150	36,1	75,8	97,5	333	3,40	67,5	334	408	350	111	3,47	2,66	0,76
3	BI25-	25	-		80	97	184	1,90	183	36,7	62,5	96,5	302	3,08	67,8	314	359	255	105	3,28	3,39	1,33
4	BI25+	25	+		66	97	188	1,93	184	46,0	56,3	96,5	319	3,26	71,8	336	379	311	108	3,36	3,88	1,25
5	BIO-	0	-		21	97	174	1,79	181	19,6	22,5	70,8	292	2,98	46,2	285	195	198	112	3,48	2,48	1,25
6	BIO+	0	+		80	98	189	1,93	190	47,3	55,5	96,3	326	3,33	62,9	323	317	218	109	3,39	2,75	1,27
7	K80	80		K	97	98	186	1,90	181	47,0	81,0	97,5	329	3,36	88,5	337	362	391	115	3,59	2,26	0,58
8	K70	70		Κ	96	98	189	1,94	184	53,1	72,5	96,5	332	3,39	97,4	325	457	411	112	3,48	2,98	0,73
9	K50	50		Κ	91	98	184	1,88	189	49,4	65,5	97,8	327	3,34	86,6	315	359	373	110	3,44	2,00	0,54
10	F70	70		F	96	98	188	1,93	185	56,1	49,5	93,8	288	2,94	80,3	277	377	344	102	3,19	1,76	0,51
11	F50	50		F	96	98	190	1,94	183	50,3	58,5	86,0	269	2,74	77,1	261	380	306	103	3,20	1,78	0,58
12	B60	60		В	89	97	181	1,86	182	32,6	41,5	96,5	328	3,35	97,7	320	255	421	109	3,39	3,42	0,81
13	T70	70		T	95	97	185	1,91	183	31,5	89,5	96,5	308	3,14	62,1	296	277	316	113	3,53	2,71	0,86
14	T50	50		Т	94	97	183	1,88	178	46,0	72,5	97,3	313	3,19	105,3	328	405	428	111	3,47	2,70	0,63
		50			88	91	152	1,66	152	36,0	65,4	97,1	325	3,32	67,4	326	383	324	111	3,47	2,83	0,88
		25			73	97	186	1,91	183	41,4	59,4	96,5	311	3,17	69,8	325	369	283	106	3,32	3,64	1,29
		0			50	98	181	1,86	185	33,4	39,0	83,5	309	3,16	54,6	304	256	208	110	3,44	2,62	1,26
		ſ	_		63	95	170	1,78	172	30,7	46,7	88,0	304	3,10	60,4	306	304	250	109	3,41	2,95	1,20
			+		78	95	176	1,85	175	43,2	62,5	96,8	326	3,33	67,4	331	368	293	109	3,41	3,10	1,09
		70			96	97	187	1,93	184	46,9	70,5	95,6	309	3,16	79,9	299	370	357	109	3,40	2,48	0,70
					183	48,6	65,5	93,7	303	3,09	89,7	302	381	369	108	3,37	2,16	0,58				
	93 98 187 1,91 187 51				51,3	69,0	97,1	330	3,36	92,0	320	408	392	111	3,46	2,49	0,63					
	96 98 189 1,93 184 53,2				53,2	54,0	89,9	278	2,84	78,7	269	378	325	102	3,20	1,77	0,55					
						38,7	81,0	96,9	310	3,16	83,7	312	341	372	112	3,50	2,71	0,74				

Tab. A-12a: AV05-2: Pflanzenparameter, Chinakohl

- 4.5.7	1 1 2 3 1 1		i manzo	· · · · · · · · · · · · · · · · · · ·										
Var	Var. Torf et Hersteller				nzahl gel	keimter l	Bällchen		Anzahl P	flanzen	rag ste			
vai.	1011	Präpa	Hersteller	06.11.	08.11.	11.11.	14.11.	21.11.	nPfl.14.11	nPfl.21.11	Ertrag g/Kste			
1	50	0.	IBDF	47,0 def	88,0 bc	91,0 b	92,0 b	92,0 a	149,0 bc	151,5 a	35,8			
2	50	m.	IBDF	59,0 defg	87,5 bc	89,0 b	89,0 b	90,5 a	146,0 b	152,0 a	36,1			
3	25	0.	IBDF	40,5 bcd	80,0 bc	96,0 b	97,0 b	97,0 b	182,0 cd	184,0 bc	36,7			
4	25	m.	IBDF	21,5 abc	66,0 b	80,5 b	96,0 b	97,0 b	176,5 bcd	187,5 c	46,0			
5	0	0.	IBDF	5,5 a	20,5 a	31,0 a	71,5 a	97,0 b	105,5 a	173,5 b	19,6			
6	0	m.	IBDF	17,5 ab	80,0 bc	94,0 b	97,5 b	98,0 b	186,0 d	189,0 c	47,3			
7	80		Klasmann	65,0 efg	96,5 c	97,0 b	97,0 b	97,5 b	184,0 d	185,5 bc	47,0			
8	70		Klasmann	62,5 defg	96,0 c	97,0 b	98,0 b	97,5 b	188,0 d	189,0 c	53,1			
9	50		Klasmann	43,0 cde	90,5 bc	95,0 b	97,0 b	98,0 b	182,0 cd	184,0 bc	49,4			
10	70		Floragard	62,0 defg	96,0 c	97,5 b	97,5 b	97,5 b	185,5 d	188,0 c	56,1			
11	50		Floragard	67,0 fg	96,0 c	98,0 b	98,0 b	98,0 b	186,0 d	190,0 c	50,3			
12	60		Brill	15,0 a	89,0 bc	96,5 b	97,0 b	97,0 b	181,5 cd	180,5 bc	32,6			
13	70		Tref	74,5 g	94,5 c	96,5 b	96,5 b	96,5 b	183,5 d	184,5 bc	31,5			
14	50		Tref	65,5 efg	93,5 c	96,0 b	96,5 b	97,0 b	179,5 bcd	182,5 bc	46,0			
GD 5%	1			23,0	25,5	19,9	14,2	3,9	33,7	13,2				
02 070						.0,0	,_	0,0	00,:	, _				
1	50	0.		47,0ab	88,0b	91,0b	92,0ab	92,0ab	149,0ab	151,5a	35,8			
2	50	m.		59,0a	87,5b	89,0b	89,0ab	90,5a	146,0ab	152,0a	36,1			
3	25	0.		40,5ab	80,0b	96,0b		97,0ab	182,0b	184,0b	36,7			
4	25	m.		21,5ab	66,0b	80,5b		97,0ab	176,5b	187,5b	46,0			
5	0	0.		5,5b	20,5a	31,0a		97,0ab	105,5a	173,5b	19,6			
6	0	m.		17,5ab	80,0b	94,0b	1	98,0b	186,0b	189,0b	47,3			
GD 5%				25,1	42,7	34,3	24,6	6,5	55,2	17,7				
			I											
	50			53,0b	87,8b	90,0	90,5	91,3	147,5	151,8a	36,0			
	25			49,8a	83,8ab	92,5	93,0	93,8	164,0	168,0b	36,4			
	0			31,0a	73,0a	88,3	96,5	97,0	179,3	185,8b	41,4			
	GD 5%			20,3	37,5	n.s.	n.s.	n.s.	n.s.	19,3				
		m.		31,0	62,8	72,7	86,8	95,3	145,5	169,7	30,7			
		0.		32,7	77,8	87,8	94,2	95,2	169,5	176,2	43,2			
		GD 5%		n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	,			
8	70		Klasmann	62,5ab	96,0	97,0	98,0	97,5 <mark>ab</mark>	188,0	189,0	53,1			
9	50		Klasmann		90,5	95,0	97,0	98,0b	182,0	184,0	49,4			
10	70		Floragard		96,0	97,5	97,5	97,5ab	185,5	188,0	56,1			
11	50		Floragard	_	96,0	98,0	98,0	98,0b	186,0	190,0	50,3			
13	70		Tref	74,5b	94,5	96,5	96,5	96,5a	183,5	184,5	31,5			
14	50		Tref	65,5ab	93,5	96,0	96,5	97,0ab	179,5	182,5	46,0			
GD 5%				25,1	n.s.	n.s.	n.s.	1,2	n.s.	n.s.				
	70			66,3	95,5	97,0	97,3	97,2	185,7	187,2	46,9			
	50			58,5	93,3	96,3	97,2	97,7	182,5	185,5	48,6			
	GD 5%			n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.				
			Klasmann		93,3	96,0	97,5	97,8	185,0	186,5	51,3			
			Floragard		93,3	96,3	97,3	97,8	183,8	186,0	52,7			
			Tref	64,5	96,0	97,8	97,8	97,8	185,8	189,0	53,2			
											JJ,Z			
			GD 5%	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.				

Tab. A-12b: AV05-2, Pflanzenparameter, Feldsalat

		4)		Λ	ميد لمام	lea landan
		ırate		Anz	anı ge Bällch	keimter
Var.	Torf	Präparate	Hersteller	44		21.11.
		ď			11.	
1	50	0.	IBDF	55,0		96,8 b
2	50	m.	IBDF	75,8		97,5 b
3	25	0.	IBDF	62,5	bcde	96,5 b
4	25	m.	IBDF	56,3	bcd	96,5 b
5	0	0.	IBDF	22,5	а	70,8 a
6	0	m.	IBDF	55,5		96,3 b
7	80		Klasmann	81,0	ef	97,5 b
8	70		Klasmann	72,5	def	96,5 b
9	50		Klasmann	65,5	cde	97,8 b
10	70		Floragard	49,5	bc	93,8 b
11	50		Floragard	58,5	bcd	86,0 b
12	60		Brill	41,5		96,5 b
13	70		Tref	89,5		96,5 b
14	50		Tref	72,5		97,3 b
GD 5%				22,0		11,9
SD 570				<i>_</i> ,∪		11,0
4	4	1		EE O	h	06.01
1	1	1		55,0		96,8b
2	1	2		75,8		97,5b
3	2	1		62,5		96,5b
4	2	2		56,3		96,5b
5	3	1		22,5		70,8a
6	3	2		55,5	b	96,3b
GD 5%				19,6		18,8
	50			65,4	h	07.1
						97,1
	25			69,1		97,0
	0			59,4		96,5
	GD 5%			10,7		n.s.
		m.		46,7	а	88,0
		0.		62,5		96,8
		GD 5%		8,8		n.s.
		30 3%		0,0		11.5.
8	70		Klasmann	72,5	ab	96,5c
9	50		Klasmann	65,5	а	97,8c
10	70		Floragard	49,5	a	93,8b
11	50		Floragard	58,5		86,0a
13	70		Tref	41,5		96,5c
14	50		Tref	72,5		97,3c
GD 5%				23,9		1,9
	70			51 E		95,6b
	70 50			54,5		
	50			65,5		93,7a
	GD 5%			n.s.		1,5
			Klasmann	69,0	ab	97,1b
			Floragard	57,5		95,8a
			Tref	54,0		89,9b
			1101	J -1 ,∪	2	00,00

GD 5%

18,1

Tab. A-13: Ae-06-01; chemische Bodenkenngrößen

Var	Verarbeitung	Torf	Faser	TS	P2O5	K20	рН	EC	NH4	NO3	Nmin	Nmin
Vai	verarbeiturig	%	rasei	%	mg/100g	mg/100g		μS/cm	m	gN/100	g	mg/l
1	gesiebt	50	Toresa	29,6	21,4	0,93	5,72	557	10,6	37,8	48,4	264
2	gesiebt	30	Toresa	30,0	22,7	1,19	5,66	711	10,5	31,3	41,8	228
3	gesiebt	0	Toresa	36,3	32,2	2,02	5,66	1063	30,8	43,5	74,3	360
4	ungesiebt	50	Toresa	29,5	24,3	0,86	5,56	631	7,1	45,6	52,6	288
5	ungesiebt	30	Toresa	32,6	30,6	1,13	5,54	774	18,3	32,9	51,2	262
6	ungesiebt	0	Toresa	38,4	39,9	1,59	5,58	1121	39,8	30,7	70,5	292
7	mitTon	50	Pappel	34,2	20,7	0,82	5,62	543	2,0	45,0	47,0	258
8	mitTon	30	Pappel	33,8	24,9	1,67	5,74	703	8,9	42,4	51,3	241
9	mitTon	0	Pappel	39,8	34,5	2,45	6,00	856	20,3	33,7	54,0	
10	ohne Ton	50	Pappel	30,1	25,5	1,21	5,68	555	7,6	26,7	34,3	181
11	ohne Ton	30	Pappel	31,5	29,6	1,61	5,56	650	12,2	29,6	41,8	204
12	ohne Ton	0	Pappel	38,2	39,0	2,83	6,07	916	21,4	48,6	69,9	280
13	Klasmann	70	ohne	29,3	23,8	0,65	5,79	432	4,8	26,1	30,9	164
			Toresa	32,8	28,5	1,29	5,62	809	19,5	37,0	56,5	282
			Pappel	34,6	29,0	1,76	5,78	704	12,1	37,7	49,7	232
		'										
		50		30,9	23,0	0,95	5,65	571	6,8	38,8	45,6	248
		30		32,0	26,9	1,40	5,62	709	12,5	34,0	46,5	234
		0		38,2	36,4	2,22	5,82	989	28,1	39,1	67,2	289
	gesiebt		Toresa	32,0	25,4	1,38	5,68	777	17,3	37,5	54,8	284
	ungesiebt		Toresa	33,5	31,6	1,19	5,56	842	21,7	36,4	58,1	281
•								-				
		50	Toresa	29,6	22,8	0,90	5,64	594	8,9	41,7	50,5	276
		30	Toresa	31,3	26,6	1,16	5,60	742	14,4	32,1	46,5	245
		0	Toresa	37,4	36,0	1,80	5,62	1092	35,3	37,1	72,4	326
						·						<u> </u>
	mit Ton		Pappel	35,9	26,7	1,65	5,79	701	10,4	40,4	50,8	242
	ohne Ton		Pappel	33,3	31,4	1,88		707	13,7	35,0		222
				,-	, - ,	.,	-,-		, • [,•	, -	
		50	Pappel	32,2	23,1	1,01	5,65	549	4,8	35,8	40,7	220
		30	Pappel	32,6		1,64			10,6	36,0		
		0	Pappel	39,0		2,64			20,8	41,1	62,0	
			, apper	55,5	00,0	2,07	5,00	000	20,0	, .	52,0	_00

Tab. A-14: Ae-06-01; physikalische Bodenparameter

Var	Verarbeitung	Torf	Faser	RDFS	EN	Pressen	Höhe	TS
vai	* Craibolang	%	1 4301	g/l	g/l	Kg/Ki	cm	%
1	gesiebt	50	Toresa	546	414	5,78cd	3,8	35,8
2	gesiebt	30	Toresa	546	397	5,97de	4,0	39,3
3	gesiebt	0	Toresa	484	381	4,61a	3,8	46,7
4	ungesiebt	50	Toresa	547	430	5,80de	3,9	37,5
5	ungesiebt	30	Toresa	512	376	6,05de	3,8	41,2
6	ungesiebt	0	Toresa	414	325	6,12de	4,2	51,7
7	mit Ton	50	Pappel	549	389	6,12de	3,7	38,5
8	mit Ton	30	Pappel	470	424	6,22e	4,2	44,2
9	mit Ton	0	Pappel	417	338	5,27b	3,9	57,5
10	ohne Ton	50	Pappel	528	396	6,03de	3,7	38,0
11	ohne Ton	30	Pappel	489	384	6,06de	3,8	42,4
12	ohne Ton	0	Pappel	401	315	5,35bc	4,2	58,9
13	Klasmann	70	ohne	532	425	5,77 cd	3,8	33,5
		•	Toresa	508,1	387	5,72	3,9	42,0
			Pappel	475,7	374	5,84	3,9	46,6
			. сърго.	,.	<u> </u>	,	0,0	, .
		50		542,3	407	5,93b	3,7	37,5
		30		504,3	395	6,07b	3,9	41,8
		0		429,1	340	5,40a	4,0	53,7
					<u> </u>	·		
	gesiebt		Toresa	525,3	398	5,60	3,9	40,6
	ungesiebt		Toresa	491,0	377	5,98	4,0	43,5
!		•			<u> </u>			
		50	Toresa	546,3	422	5,79	3,8	36,6
		30	Toresa	529,0	387	6,01	3,9	40,2
		0	Toresa	449,1	353	4,60	4,0	49,2
				-,-		, -	, , , -	-,-
	mit Ton		Pappel	479,0	384	5,87	3,9	46,8
	ohne Ton		Pappel	472,3	365	5,81	3,9	46,5
	00 10.1	1	,pp-01	=,0		-,- :	, 5,5	. 5,5
		50	Pappel	538,4	393	6,08b	3,7	38,3
		30	Pappel	479,5	393 404	6,06b 6,14b	4,0	30,3 43,3
		0						
		U	Pappel	409,1	326	5,31a	4,0	58,2

Tab. A-15: Ae-06-01; Kressetest

				0	F0 B1 #	TO DI #	4570
Var	Verarbeitung	Torf %	Faser	Gewicht	FG Blatt	TG Blatt	AFTG
		50	T	g/Gl	g/Gl	g/Gl	g/GI
1	gesiebt	50	Toresa	287 cde	4,88	0,87	0,223
2	gesiebt gesiebt	30 0	Toresa	300g	4,40	0,54	0,206
	•		Toresa	268b	3,53	0,34	0,194
4	ungesiebt	50	Toresa	285cd	5,88	0,48	0,220
5	ungesiebt	30	Toresa	287de	5,85	0,52	0,221
6	ungesiebt	0	Toresa	258a	4,80	0,43	0,208
7	mitTon	50	Pappel	297fg	4,56	0,62	0,205
8	mitTon	30	Pappel	290def	5,51	0,51	0,202
9	mitTon	0	Pappel	266ab	5,93	0,45	0,211
10	ohne Ton	50	Pappel	287de	6,15	0,48	0,226
11	ohne Ton	30	Pappel	296efg	7,25	0,60	0,226
12	ohne Ton	0	Pappel	266ab	4,87	0,41	0,195
13	Klasmann	70	ohne	277c	6,81	0,63	0,221
Щ	GD 5%			9,6	ns	ns	ns
	gesiebt		Toresa	285 b	4,28 a	0,58	0,208
	ungesiebt		Toresa	277 a	5,60 ab	0,48	0,217
	mitTon		Pappel	285 b	5,33 ab	0,53	0,206
	ohne Ton		Pappel	283 b	6,09 b	0,49	0,217
	GD 5%			5,8		ns	ns
		50		289 b	5,42	0,59	0,218
		30		293 b	5,74	0,54	0,213
		0		264 a	4,94	0,41	0,203
		GD 5%		5,0	ns	ns	ns
	gesiebt		Toresa	285	4,28	0,58	0,208
	ungesiebt		Toresa	277	5,60	0,48	0,200
	GD 5%		101000	ns	ns	ns	ns
1	gesiebt	50	Toresa	287 b	4,88	0,87	0,223
2	gesiebt	30	Toresa	300 c	4,40	0,54	0,223
3	gesiebt	0	Toresa	268 a	3,53	0,34	0,200
4	ungesiebt	50	Toresa	285 b	5,88	0,34	0,194
5	ungesiebt	30	Toresa	287 b	5,85	0,48	0,220
		0					
6	ungesiebt	U	Toresa	258 a	4,80	0,43	0,208
	GD 5%			11,5	ns	ns	ns
		50	Toresa	286 b	5,50	0,63	0,221
		30	Toresa	294 b	5,13	0,53	0,214
		0	Toresa	263 a	4,16	0,39	0,201
-		GD 5%		8,8	ns	ns	ns
	mitTon		Pappel	285	5,33	0,53	0,206
	ohne Ton		Pappel	283	6,09	0,49	0,217
	GD 5%			ns	ns	ns	ns
7	mitTon	50	Pappel	297 с	4,56	0,62	0,205
8	mitTon	30	Pappel	290 bc	5,51	0,51	0,202
9	mitTon	0	Pappel	266 a	5,93	0,45	0,211
10	ohne Ton	50	Pappel	287 b	6,15	0,48	0,226
11	ohne Ton	30	Pappel	296 c	7,25	0,60	0,226
12	ohne Ton	0	Pappel	266 a	4,87	0,41	0,195
	GD 5%			7,5	ns	ns	ns
		50	Pappel	292 b	5,36	0,55	0,216
		30	Pappel	292 b	6,28	0,55	0,210
		0	Pappel	266 a	5,46	0,33	0,213
		GD 5%	i appel	5,9			0,20 4
		70		J,J	ns	ns	115

Tab. A-16: Ae-06-01; Pflanzenparameter Eissalat

						Г.	nte
Var	Verarbeitung	Torf%	Faser	Au	fgang		
Vai	veraibeliting	101176	rasei			FG Blatt	TG Blatt
				8tag	13Tag	g/Ki	g/Ki
1	gesiebt	50	Toresa	83,0	90,0	240de	11,0bcd
2	gesiebt	30	Toresa	80,7	89,3	199bcd	9,5bc
4	ungesiebt	50	Toresa	79,0	87,0	210bcd	9,8bc
5	ungesiebt	30	Toresa	87,7	92,0	216bcd	10,6bcd
6	ungesiebt	0	Toresa	83,0	88,0	134a	7,3a
7	mitTon	50	Pappel	79,3	92,3	215bcd	10,1bc
8	mitTon	30	Pappel	92,7	96,0	236de	11,2cd
9	mitTon	0	Pappel	91,0	92,3	188bc	9,7bc
10	ohne Ton	50	Pappel	92,0	93,7	262e	12,1d
11	ohne Ton	30	Pappel	91,7	95,3	221cde	11,1cd
12	ohne Ton	0	Pappel	87,7	92,7	175ab	9,2ab
13	Klasmann	70	ohne	95,0	95,5	313f	14,0e
	GD			ns	ns	45,3	1,89
		1	T	04.0	00.7-1-	040	40.0
	gesiebt		Toresa	81,8	89,7ab	219	10,3
	ungesiebt		Toresa	83,3	89,1a	193	9,4
	mitTon		Pappel	86,4	93,2bc	213	10,3
	ohne Ton		Pappel	90,9	94,2c	219	10,8
	GD			ns	4,05	ns	ns
		50		82,3	90,3	232b	10,7b
		30		88,2	92,5	218b	10,75 10,6b
		0		88,4	93,0	170a	
		<u> </u>					8,9a
		GD		ns	ns	47	1,6

Tab. A-17: Ae-06-01; Pflanzenparameter Chinakohl

		T (Aufo	nana	Erı	nte
Var	Verarbeitung	Torf %	Faser	Auig	gang	FG Blatt	TG Blatt
		,,		8tag	15tag	g/Ki	g/Ki
1	gesiebt	50	Toresa	97,0	97,0	301 cde	17,5cde
2	gesiebt	30	Toresa	97,0	96,3	275bcd	15,7bc
3	gesiebt	0	Toresa	97,0	97,0	179a	11,8a
4	ungesiebt	50	Toresa	97,7	97,7	309cde	17,1cde
5	ungesiebt	30	Toresa	97,3	97,3	294 cde	16,7bcd
6	ungesiebt	0	Toresa	82,0	82,0	176a	11,2a
7	mitTon	50	Pappel	97,3	97,7	329e	18,3de
8	mitTon	30	Pappel	97,0	97,3	315de	17,8cde
9	mitTon	0	Pappel	97,7	97,7	259bc	15,6bc
10	ohne Ton	50	Pappel	96,0	96,7	340e	19,3e
11	ohne Ton	30	Pappel	97,3	97,7	318de	18,1cde
12	ohne Ton	0	Pappel	96,0	95,3	232b	14,4b
13	Klasmann	70	ohne	96,7	97,0	324de	18,7de
GD5%				ns	ns	49,9	2,48
	assisht	1	Tarasa	07.0	00.0	050 -	45.0-
	gesiebt		Toresa	97,0	96,8	252a	15,0a
	ungesiebt		Toresa	92,3	92,3	259a	15,0a
	mitTon		Pappel	97,3	97,6	301b	17,2b
	ohne Ton		Pappel	96,4	96,6	297b	17,2b
	GD5%			ns	ns	25,8	1,37
		50		97,0	97,3	320b	18,0b
		30		97,2	97,2	301b	17,1b
		0		93,2	93,0	212a	13,2a
		GD5%		ns	ns	22,3	1,18

Tab. A-18: Ae-06-01; Bodenparameter Wiederbefeuchtungstest

Wiederbefeuchtung Wasseraufnahme in g:

	Wiederbeiteubritatig Wasserdamarine in g.																
Var	Verarbeitung	Torf	Faser					Stı	under	nach	n Befe	euchti	ung				
vai	veraineliung	%	i asei	0,01	0,08	0,25	0,5	1	2	4	7	14	22	31	55	79	127
1	gesiebt	50	Toresa	58	230	272	273	283	279	289	290	299	305	302	298	307	307
2	gesiebt	30	Toresa	38	175	266	278	295	289	297	298	304	307	309	302	307	310
3	gesiebt	0	Toresa	54	222	280	289	287	286	290	286	298	294	288	275	292	280
4	ungesiebt	50	Toresa	30	146	281	297	303	305	322	317	327	337	339	331	342	337
5	ungesiebt	30	Toresa	37	169	265	275	299	298	309	310	317	320	323	322	326	322
6	ungesiebt	0	Toresa	38	153	258	293	277	299	288	285	281	306	304	275	283	291
7	mitTon	50	Pappel	24	105	217	258	271	284	291	296	301	309	314	305	312	315
8	mitTon	30	Pappel	26	87	162	224	269	305	310	322	325	333	330	323	327	331
9	mitTon	0	Pappel	46	155	256	285	283	314	302	289	289	309	309	282	298	297
10	ohne Ton	50	Pappel	25	96	202	242	249	260	270	279	286	290	290	285	290	299
11	ohne Ton	30	Pappel	23	115	240	260	280	295	305	304	309	319	321	312	312	319
12	ohne Ton	0	Pappel	35	138	249	252	284	293	307	305	319	339	343	308	315	311
13	Klasmann	70	ohne	22	99	223	253	271	285	298	306	313	321	329	325	332	342

Tab. A-19: Ae-06-01; Bodenparameter nach Ernte

		Torf	_	NH4	NO3	Nmin	Nmin	TS
Var	Verarbeitung	%	Faser	mgN/1	00g		mgN/Ki	%
1	gesiebt	50	Toresa	0,545abcd	17,0	17,5	812	39,4bc
2	gesiebt	30	Toresa	0,425a	17,2	17,7	861	40,3bc
3	gesiebt	0	Toresa	0,928ef	16,2	17,1	703	47,8d
4	ungesiebt	50	Toresa	0,490abc	16,7	17,2	799	39,8bc
5	ungesiebt	30	Toresa	0,545abcd	18,7	19,2	958	41,0bc
6	ungesiebt	0	Toresa	0,939f	15,3	18,8	1053	44,1cd
7	mit Ton	50	Pappel	0,470ab	16,4	16,9	836	37,8cd
8	mit Ton	30	Pappel	0,715abcdef	19,1	19,8	1027	42,6bcd
9	mit Ton	0	Pappel	0,780cdef	20,2	21,0	1002	48,0d
10	ohne Ton	50	Pappel	0,620abcde	16,2	16,8	800	40,3bc
11	ohne Ton	30	Pappel	0,760bcdef	17,7	18,4	884	43,3cd
12	ohne Ton	0	Pappel	0,805def	13,9	14,7	723	46,6d
13	Klasmann	70	ohne	0,535abcd	14,4	14,9	689	37,7a
	GD 5%				ns	ns	ns	
			Toresa	0,500	14,5	17,5	807	41,6
			Pappel	0,655	18,6	19,2	955	42,8
			GD 5%	ns	ns	ns	ns	ns
		50		0,531a	16,8	17,4	812	39,5a
		30		0,611a	17,5	18,1	932	40,4a
		0		0,852b	14,2	17,2	884	44,7b
			GD 5%		ns	ns	ns	
r					1			
	gesiebt		Toresa	0,500	14,5	17,5	807	41,6
	ungesiebt		Toresa	0,613	16,9	18,4	931	41,5
	GD 5%			ns	ns	ns	ns	ns
			· ·		1		· · · · · · · · · · · · · · · · · · ·	
		50	Toresa	0,518a	16,8	17,4	805	39,6a
		30	Toresa	0,485a	17,9	18,4	909	40,7a
		0	Toresa	0,935b	14,3	15,1	761	38,0b
			GD 5%		ns	ns	ns	
		1	· · · · · · · · · · · · · · · · · · ·		1		,	
	mit Ton		Pappel	0,655	18,6b	19,2	955b	42,8
	ohne Ton		Pappel	0,728	15,9a	16,6	802a	43,4
	GD 5%			ns	2,7	ns	138,5	ns
			-			1	-	
		50	Pappel	0,545a	16,3	16,9	818	44,1a
		30	Pappel	0,738b	18,4	19,1	955	43,0b
		0	Pappel	0,793b	15,9	16,7	805	39,0c
			GD 5%	0,179	ns	ns	ns	3,7