Effect of forage legumes on milk quality
- review

Håvard Steinshamn

Workshop “Quality and nutrition value of organic milk and meat”, November 19, 2009, Jastrzebic, Poland

Introduction

• Grassland legumes essential role in organic farming
 - N fixation capacity and productivity
 - Feeding value

• Renewed interest for grassland legumes in general
 - New research results
Objective

- Summarize the effect of grassland legumes in silage based diets on:
 - Feed intake
 - Milk production
 - Milk composition

Material methods

- Data gathered from literature
- Dairy cows on silage based diets
- Six different dataset created
 - Grass (G) vs. Legume (L), n=14
 - G vs. Red clover (RC), n=11
 - G vs. White clover (WC), n=7
 - RC vs. WC, n=6
 - Lucerne (M) vs. RC, n=5
 - RC proportion 0.5 vs. 1.0, n=5
Studies included and datasets created

<table>
<thead>
<tr>
<th>Reference (Experiment)</th>
<th>Legume species</th>
<th>Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dallal et al. 1983 (1)</td>
<td>WC</td>
<td>X</td>
</tr>
<tr>
<td>Gersz et al. 1985 (2)</td>
<td>WC</td>
<td>X</td>
</tr>
<tr>
<td>Therma et al. 1985</td>
<td>RC</td>
<td>X</td>
</tr>
<tr>
<td>Randby 1982</td>
<td>RC</td>
<td>X</td>
</tr>
<tr>
<td>Hoffman et al. 1977 (1)</td>
<td>RC, M</td>
<td>X</td>
</tr>
<tr>
<td>Hoffman et al. 1977 (2)</td>
<td>RC, M</td>
<td>X</td>
</tr>
<tr>
<td>Hoffman et al. 1978</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>Storde et al. 2000</td>
<td>RC, M</td>
<td></td>
</tr>
<tr>
<td>Storde et al. 2001</td>
<td>WC, M</td>
<td></td>
</tr>
<tr>
<td>Bartliss & Murphy 2003 (1)</td>
<td>RC, WC</td>
<td>X</td>
</tr>
<tr>
<td>Bartliss & Murphy 2003 (2)</td>
<td>RC, WC</td>
<td>X</td>
</tr>
<tr>
<td>Steinhorn & Thuen 2008</td>
<td>RC</td>
<td>X</td>
</tr>
<tr>
<td>Vanharo et al. 2009</td>
<td>RC</td>
<td>X</td>
</tr>
<tr>
<td>Vanharo et al. 2008</td>
<td>RC</td>
<td>X</td>
</tr>
<tr>
<td>Total number of comparisons</td>
<td>14</td>
<td>11</td>
</tr>
</tbody>
</table>

Material methods

Statistic

Simple t-test with experiment as replicate
Results

Dry matter intake (kg/day)
Milk yield (kg/day)

Milk fat content (g/kg)
Milk protein content (g/kg)

Milk fatty acid composition (g/100g FAME) n=8
Milk fatty acid composition (g/100g FAME)
n=4

Milk equol content (Steinshamn et al. 2008)

WC vs. RC ***

RC, 7
RC, 0
WC, 7
WC, 0

Equol, µg/L

0 vs. 7 *
Milk equol content (Mustonen et al. 2009)

Summary grass vs legumes

- DMI
 - Legumes + 1.2 kg
 - Red clover + 1.1 kg
 - White clover + 1.3 kg
- Milk yield
 - Legumes + 1.6 kg
 - Red clover + 1.5 kg
 - White clover + 2.4 kg
Summary grass vs legumes

- Milk fat content
 - Legumes - 1.5 g/kg
 - Red clover - 1.9 g/kg
- Milk protein content
 - Red clover -0.5 g/kg
- Milk fatty acid composition
 - Red clover + C18:2n-6 and C18:3n-3

Legume species

- DMI
 - Lucerne vs. red clover +0.8 kg
- Milk yield
 - White clover vs. red clover + 1.0 kg
- Milk protein content
 - White clover vs. red clover + 0.6 g/kg
 - Lucerne vs. red clover + 0.6 g/kg
Legume species

- Milk fatty acid proportion
 - Red clover vs grass + C18:2n-6 and C18:3 n-3
- Milk equol content
 - Red clover vs. grass or white clover +

Conclusions

- Legumes increase DMI and milk yield relative to grass
- White clover is superior to red clover in milk yield
- Red clover is superior to lucerne in milk yield
Conclusions

• Red clover yields lower milk fat content than grass
• Red clover yields lower milk protein content than white clover and lucerne
• Increasing red clover proportion reduces milk protein content
• Red clover yields higher milk proportion of C18:2n-6 and C18:3n-3 than grass
• Red clover yields milk with high content of equol

Concluding remark

• Negative effect of red clover on milk fat and protein content warrants further research