Einsatz von Raufuttermitteln (Silage, Weidelgras, Topinambur und Stoppelrüben) im Vegetationsverlauf in der ganzjährigen Freilandhaltung von Mastschweinen

Use of roughage (silages, ryegrass, Jerusalem artichoke, and turnip) during vegetation course in year round free range production of fattening pigs

FKZ: 03OE407

Projektnehmer:
Universität Kassel
FB 11 Ökologische Agrarwissenschaften
Nordbahnhofstraße 1a, 37213 Witzenhausen
Tel.: +49 5542 98 1707
Fax: +49 5542 98 1581
E-Mail: sundrum@wiz.uni-kassel.de
Internet: http://www.uni-kassel.de

Autoren:
Sappok, Maria; Pellikaan, Wilbert; Schenkel, Hans; Sundrum, Albert

Gefördert vom Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz im Rahmen des Bundesprogramms Ökologischer Landbau (BÖL)

Bundesprogramm Ökologischer Landbau

Schlussbericht: Projekt 03OE407

„Einsatz von Raufuttermitteln (Silage, Weidelgras, Topinambur und Stoppelrüben) im Vegetationsverlauf in der ganzjährigen Freilandhaltung von Mastschweinen“

Projektleitung: Prof. Dr. A. Sundrum
Projektbearbeitung: Maria Sappok (Dipl. Ing. agr.)

in Zusammenarbeit mit:

Prof. Dr. Hans Schenkel
Landesanstalt für landwirtschaftliche Chemie
Universität Hohenheim
Emil-Wolff-Str. 14, 70599 Stuttgart

Dr. Wilbert Pellikaan
Institute of Animal Sciences (WIAS)
Animal Nutrition Group
Wageningen University, Marijekeweg 40
6709 PG Wageningen
The Netherlands

Prof. Dr. Rainer Jörgensen
FG Bodenkunde
FB Ökologische Agrarwissenschaften
Universität Kassel, Nordbahnhofstr. 1a
37213 Witzenhausen
INHALTSVERZEICHNIS

1 ZIELE UND AUFGABENSTELLUNG DES PROJEKTS, BEZUG DES VORHABENS ZUM PROGRA
MMA ZUR FÖRDERUNG VON FORSCHUNG- UND ENTWICKLUNGSVORHABEN 5

1.1 EINLEITUNG UND PROBLEMSTELLUNG ... 5
1.2 ZIEL DES PROJEKTS UND BEZUG DES VORHABENS ZU DEN FÖRDERPOLITISCHER
EN ZIELEN ... 5
1.3 PLANUNG UND ABLAUF DES PROJEKTES ... 6

2 WISSENSCHAFTLICHER UND TECHNISCHER STAND, AN DEN ANGEKNÜPFT WUR
DE ... 9

2.1 RAUFUTTERMITTEL ... 9

2.1.1 Stoppelrübe .. 9
2.1.2 Topinambur ... 10
2.1.3 Weidelgras ... 11
2.1.4 Kleegrasilage ... 12
2.1.5 Maissilage ... 13

2.2 VERWERTUNG VON FUTTERMITTELN ... 13

2.2.1 Quantifizierung der Raufutteraufnahme durch Marker 13
2.2.2 In vitro Verdaulichkeit von Raufuttermitteln ... 14
2.2.3 Einfluss von Raufuttermitteln auf die mikrobielle Aktivität im Schweinekot 15

3 MATERIAL UND METHODEN .. 16

3.1 VERSUCHS-DURCHFÜHRUNG .. 16

3.1.1 Haltung ... 16
3.1.2 Versuchstiere ... 17
3.1.3 Fütterung und Tränke ... 18
3.1.4 Erfasste Parameter und Analysen (Feld) .. 20
3.1.5 Erfassung von Leistungs- und Gesundheitsdaten am Schlachthof 22

3.2 UNTERSUCHUNGEN ZUR IN VITRO VERDAULICHKEIT 23

3.2.1 Enzymatische in vitro Verdaulichkeit (Boisen und Fernandez, 1997) 24
3.2.2 Dickdarmsimulierte in vitro Fermentation (Williams et al., 2005) 24
3.2.3 Enzymatische Vorbehandlung mit anschließender Fermentation 25

4 ERGEBNISSE ... 26

4.1 PRODUKTIONSLEISTUNGEN ... 26

4.1.1 Nährstoffgehalte der Aufwuchse und der Futtermittel ... 26
4.1.2 Lebendmasseentwicklung .. 28
4.1.3 Schlachtleistung ... 30
4.1.4 Salmonellenbefunde ... 32

4.2 KOT- UND BODENPROBENANA LYSE .. 33

4.2.1 Trockennasse und Rohaschegehalte ... 33
4.2.2 pH-Werte im Kot .. 34
4.2.3 Titangehalte im Kot .. 35
4.2.4 Titangehalte im Boden ... 37
4.2.5 Gehalte an Seltenen Erden im Kot und im Boden ... 37
4.2.6 Mikrobielle Aktivität im Kot ... 38

4.3 VERDAULICHKEITSBESTIMMUNGEN IN VITRO .. 39

4.3.1 Analyse von Rohnährstoffen, Rohfasern und Stärke .. 39
4.3.2 Verlust an Organischer Masse ... 41
4.3.3 Fermentationscharakteristika ... 43
4.3.4 Gasbildungskinetik ... 45

4.4 BESTIMMUNG DER FUTTERAUFNAHME VON RAUFUTTER UNTER FREILANDBE
DINGUNGEN .. 48
4.5 VORAUSSICHTLICHEN NUTZEN UND VERWERTBARKEIT DER ERGEBNISSE .. 49

5 ZUSAMMENFASSUNG ... 51

6 GEGENÜBERSTELLUNG DER URSPRÜNLICHEN GEPLAN T EN ZU DEN TATSÄCHLI
CH ERREICHTEN ZIELEN; HINWEISE AUF WEITERFÜHRENDE FRAGESTELLUNGEN ... 53

7 ÜBERSICHT ÜBER ALLE IM BERICHTSZEITRAUM VOM PROJEKTNEHMER REALISIEREN
TE VERÖFFENTLICHUNGEN ZUM PROJEKT .. 54

8 LITERATURVERZEICHNIS ... 55
TABELLENVERZEICHNIS

Tabelle 1.1: Versuchsdesign des Forschungsvorhabens .. 7
Tabelle 1.2: Übersicht über die Versuchsdurchgänge, eingesetzten Raufutter, Wachstumsstadien der Feldfutterpflanzen, Mengen des Kraftfutters sowie Dauer der Masterperioden .. 8
Tabelle 2.1: Mittlere Zusammensetzung der Stoppelrübe (Brassica rapa var. rapa) 10
Tabelle 2.2: Mittlere Zusammensetzung der Topinambur-Knolle (Helianthus tuberosus) 11
Tabelle 3.1: Rassen und Anteile der jeweiligen Genetik der Tiere in den verschiedenen Mastdurchgängen .. 17
Tabelle 3.2: Richtwerte für die Nährstoff- und Energieversorgung von Mastschweinen (GfE, 2006) 18
Tabelle 3.3: Tägliche Futtermenge pro Tier in den Kontroll- und Versuchs-Varianten 19
Tabelle 3.4: Parameter der Schlachtleistung ... 22
Tabelle 3.5: Befunderfassung an Schlachtkörper und Organen .. 23
Tabelle 3.6: Zusammensetzung der Standardration für Schweine ... 24
Tabelle 4.1: Mittlere Weender Rohnährstoff- und Energiegehalte der eingesetzten Futtermittel 26
Tabelle 4.2: Mittlere Tageszunahmen in Anfangs- und Endmast der Mastdurchgänge 1 und 3 28
Tabelle 4.3: Mittlere Tageszunahmen in Anfangs- und Endmast der Mastdurchgänge 2 und 4 29
Tabelle 4.4: Mittlere Schlachtleistungen der Tiere der Mastdurchgänge 1 und 3 31
Tabelle 4.5: Mittlere Schlachtleistungen der Mastschweine in den Mastdurchgängen 2 und 4 32
Tabelle 4.6: Salmonellenbefunde bei den Schlachtkörpern in den verschiedenen Mastdurchgängen .. 32
Tabelle 4.7: Mittlere Trockenmassegehalte des Kotes in den Anfangs- und Endmast in den verschiedenen Mastdurchgängen .. 33
Tabelle 4.8: Mittlere Rohaschegehalte des Kotes in der Anfangs- und Endmast in den verschiedenen Mastdurchgängen .. 34
Tabelle 4.9: Mittlere pH-Werte des Kotes in der Anfangs- und Endmast in den verschiedenen Mastdurchgängen .. 35
Tabelle 4.10: Mittlerer Gehalt an Titandioxid im Kot nach Druckaufschluss in der Anfangs- und Endmast in den verschiedenen Mastdurchgängen .. 35
Tabelle 4.11: Mittlere Gehalte an Seltenen Erden in den Kotproben der verschiedenen Fütterungsvarianten und in Bodenproben .. 38
Tabelle 4.13: Analyse von Rohnährstoffen, Rohfasern und Stärke der un- und vorbehandelten Substrate ... 40
Tabelle 4.14: Verlust an Organischer Masse in % in Abhängigkeit von den Inkubationsschritten und -methoden ... 42
Tabelle 4.15: Mittlere Abbaureate und Fermentationscharakteristika von unbehandelten und vorbehandelten Substraten .. 44
Tabelle 4.16: Parameter der Gasbildung bei unbehandelten und mit dem Kontroll-Inokulum vorbehandelten Substraten .. 46
Tabelle A1: Mittlere Lebendmasseentwicklung im gesamten Mastverlauf im 1. und 3. Mastdurchgang 58
Tabelle A2: Mittlere Lebendmasseentwicklung im gesamten Mastverlauf im 2. und 4. Mastdurchgang 58
Tabelle A 3: Mastdurchgang, Anzahl der Schlachtermine, Zeitraum der Schlachtermine pro Mastdurchgang, Tierzahl und Probename .. 58
Tabelle A 4: Mittlere Handelsklasseinstitufungen der Mastdurchgänge 1 und 3 59
Tabelle A 5: Mittlere Handelsklasseinstitufungen der Mastdurchgänge 2 und 4 59
Tabelle A 6: Organbefunde bei der Schachterung der verschiedenen Mastdurchgänge 59
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Säure-Detergenz-Faser</td>
<td>N</td>
<td>Stickstoff</td>
</tr>
<tr>
<td>ADL</td>
<td>Säure-Detergenz-Lignin</td>
<td>NDF</td>
<td>Neutral-Detergenz-Faser</td>
</tr>
<tr>
<td>AM</td>
<td>Anfangsmast</td>
<td>NFE</td>
<td>N-freie Extrakstoffe</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
<td>NH<sub>3</sub></td>
<td>Ammoniak</td>
</tr>
<tr>
<td>Cys</td>
<td>Cystein</td>
<td>NIRS</td>
<td>Nah-Infrarot-Spektroskopie</td>
</tr>
<tr>
<td>DE</td>
<td>Deutsches Edelschwein</td>
<td>OM</td>
<td>Organische Masse</td>
</tr>
<tr>
<td>DL</td>
<td>Deutsche Landrasse</td>
<td>P</td>
<td>Phosphor</td>
</tr>
<tr>
<td>dt</td>
<td>Dezitionen</td>
<td>Pi</td>
<td>Pietrain</td>
</tr>
<tr>
<td>DU</td>
<td>Duroc</td>
<td>pcv</td>
<td>praecael verdauflich</td>
</tr>
<tr>
<td>EL</td>
<td>Englische Landrasse</td>
<td>R</td>
<td>Raufuttervariante</td>
</tr>
<tr>
<td>EM</td>
<td>Endmast</td>
<td>RF</td>
<td>Raufutter</td>
</tr>
<tr>
<td>FFS</td>
<td>flüchtige Fettsäuren</td>
<td>RI</td>
<td>Raufutter-Inokulum</td>
</tr>
<tr>
<td>FM</td>
<td>Frischmasse</td>
<td>SEM</td>
<td>Standardfehler</td>
</tr>
<tr>
<td>FM</td>
<td>Fleischmaß</td>
<td>SG</td>
<td>Schlachtgewicht</td>
</tr>
<tr>
<td>ggr</td>
<td>geringgradig</td>
<td>SM</td>
<td>Speckmaß</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinaltrakt</td>
<td>SR</td>
<td>Stoppelrübe</td>
</tr>
<tr>
<td>hgr</td>
<td>hochgradig</td>
<td>TG</td>
<td>das Topinambur-Kraut</td>
</tr>
<tr>
<td>HKL</td>
<td>Handelsklasse</td>
<td>Thr</td>
<td>Threonin</td>
</tr>
<tr>
<td>IMF</td>
<td>Intramuskulärer Fettgehalt</td>
<td>TK</td>
<td>Topinamburknollen</td>
</tr>
<tr>
<td>K</td>
<td>Kontrollvariante</td>
<td>TM</td>
<td>Trockenmasse</td>
</tr>
<tr>
<td>KF</td>
<td>Kraftfutter</td>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>KS</td>
<td>Kleegrasilage</td>
<td>UB</td>
<td>unbehandelt</td>
</tr>
<tr>
<td>LW</td>
<td>Dänische Landrasse</td>
<td>VB</td>
<td>vorbehandelt</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysin</td>
<td>w</td>
<td>weiblich</td>
</tr>
<tr>
<td>m</td>
<td>männlich</td>
<td>WG</td>
<td>Weidelgras</td>
</tr>
<tr>
<td>MD</td>
<td>Mastdurchgang</td>
<td>XA</td>
<td>Rohasche</td>
</tr>
<tr>
<td>Met</td>
<td>Methionin</td>
<td>XF</td>
<td>Rohfaser</td>
</tr>
<tr>
<td>MF A</td>
<td>Muskelfleischanteil</td>
<td>XL</td>
<td>Rohfett</td>
</tr>
<tr>
<td>mgr</td>
<td>mittelgradig</td>
<td>XP</td>
<td>Rohprotein</td>
</tr>
<tr>
<td>MS</td>
<td>Maisilage</td>
<td>XS</td>
<td>Stärke</td>
</tr>
<tr>
<td>m/w</td>
<td>gemischt geschlechtlich</td>
<td>XZ</td>
<td>Zucker</td>
</tr>
</tbody>
</table>
1 Ziele und Aufgabenstellung des Projekts, Bezug des Vorhabens zum Programm zur Förderung von Forschungs- und Entwicklungsvorhaben

1.1 Einleitung und Problemstellung

- Beschäftigung der Tiere durch ausgedehntes Nahrungsaufnahmeverhalten,
- Sicherstellung eines Sättigungsgefühls bei rationierter Kraftfutterfütterung,
- Erzeugung hochwertiger Wirtschaftsdünger durch Erhöhung des Anteiles organisch gebundenen Stickstoffs im Kot sowie

1.2 Ziel des Projekts und Bezug des Vorhabens zu den förderpolitischen Zielen

Ziel des Forschungsprojektes war es, die Optimierungspotentiale für die Etablierung einer ganzjährigen Freilandhaltung von Mastschweinen unter ökologischen Rahmenbedingungen zu prüfen. Im Vordergrund stand dabei die Quantifizierung der Raufutteraufnahme mittels Indikatormethode. Basierend auf den Aussagen in der verfügbaren Literatur wurden folgende Arbeitshypothesen aufgestellt:
Arbeitshypothesen
1. Raufuttermittel können in relevanter Größenordnung zur Nährstoffversorgung von Mastschweinen beitragen.
2. Titandioxid ist als Marker zur Bestimmung der Aufnahmemengen von Raufutter im Freiland geeignet.
3. Der Einsatz von Raufutter sowie die Haltung im Freiland haben einen signifikanten Einfluss auf die Kotbeschaffenheit hinsichtlich pH-Wert und mikrobieller Aktivität.

1.3 Planung und Ablauf des Projektes
Für die Versuchsdurchführung wurde zu Beginn des Jahres 2006 auf Ackerflächen der Hessischen Staatsdomäne Frankenhausen (Versuchsbetrieb der Universität Kassel) eine Freilandanlage gemäß den Vorgaben der Schweinehaltungshygieneverordnung errichtet. Die Anlage wurde von der zuständigen Veterinärverwaltung genehmigt.
- eine Sommer-Mast von März bis August unter Nutzung von Frischfutter (Gras, Topinambur, Stoppelrübe) ab Feld und
- eine Winter-Mast von September bis März, bei der sowohl Feldfutter als auch Silage zum Einsatz kamen.
Jeder Mastdurchgang wurde in eine Anfangs- und eine Endmast unterteilt. Tabelle 1.1 enthält eine Übersicht des Versuchsdesigns.
| Tabelle 1.1: Versuchsdesign des Forschungsvorhabens |
|----------------------------------|----------------------------------|
| **Kontrollvariante** | **Versuchsvarianten** |
| Genetik | Pi x (Du x DL) | Pi x (Du x DL) |
| Geschlecht | männlich | weiblich | männlich | weiblich |
| Anzahl Tiere | 20 | 20 | 20 | 20 |
| Genutzte Fläche während der Vegetationszeit | Ohne Bewuchs | Gras / Topinambur / Stoppelrübe |
| Grundfuttergabe außerhalb der Vegetationszeit | Keine | Stoppelrübe / Silage / Topinambur-Knolle |
| Kraftfuttermenge nach GfE-Versorgungsempfehlungen (2006) | 100% | 85% (Anfangsmast) / 70% (Endmast) |

In der Vegetationszeit kamen die Komponenten Gras, Topinambur und Stoppelrübe in Kombination mit 85% (Anfangsmast) bzw. 70% (Endmast) Kraftfutter zum Einsatz. Außerhalb der Vegetationszeit wurde Silage vorgelegt. Als Kontrolle diente eine Gruppe von 40 Tieren, die kein Grundfutter, sondern eine Kraftfuttermischung (100% gemäß den Versorgungsempfehlungen der GfE (2006) zur Erreichung von 750 g Tageszunahmen unter Stallbedingungen) als Alleinfutter erhielt.

Tabelle 1.2: Übersicht über die Versuchsdurchgänge, eingesetzten Raufutter, Wachstumsstadien der Feldfutterpflanzen, Mengen des Kraftfutters sowie Dauer der Mastperioden

<table>
<thead>
<tr>
<th>Durchgang</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kw</td>
<td>Km</td>
</tr>
<tr>
<td></td>
<td>KM/W</td>
<td>KM/W</td>
</tr>
<tr>
<td></td>
<td>MS/WGw</td>
<td>MS/WGw</td>
</tr>
<tr>
<td></td>
<td>TKW</td>
<td>TKM</td>
</tr>
<tr>
<td>Anfangsmast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zustand des Bewuchses</td>
<td>Weidelgras (Winterstadium)</td>
<td>Weidelgras (Winterstadium)</td>
</tr>
<tr>
<td>Kraftfuttergabe</td>
<td>K 100%</td>
<td>R 85%</td>
</tr>
<tr>
<td>Mastdauer</td>
<td>9 Wochen</td>
<td>9 Wochen</td>
</tr>
<tr>
<td>Endmast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zustand des Bewuchses</td>
<td>Weidelgras (Wachstum)</td>
<td>Stoppelrübe (Wachstum)</td>
</tr>
<tr>
<td>Kraftfuttergabe</td>
<td>K 100%</td>
<td>K 100%</td>
</tr>
<tr>
<td>Mastdauer</td>
<td>16 Wochen</td>
<td>19 Wochen</td>
</tr>
</tbody>
</table>

1 Kontroll-Variante (100% = Menge an benötigtem KF für 750 g TZ bei Stallhaltung nach GfE-Empfehlungen)
2 Raufutter-Variante (70 bzw. 85% der KF-Menge, welche Kontroll-Variante erhält)
2 Wissenschaftlicher und technischer Stand, an den angeknüpft wurde

Bei der Haltung von Mastschweinen im Freiland ist es nahe liegend, während der Vegetationszeit Feldfuttermittel anzubauen, die von den Tieren ab Feld aufgenommen werden können. Außerhalb der Vegetationszeit bieten sich silierte Raufuttermittel an, um den Vorgaben der Verordnung Rechnung zu tragen.

2.1 Raufuttermittel

2.1.1 Stoppelrübe

Während noch in den ersten Jahrzehnten nach dem Weltkrieg Stoppelrüber mit Blatt an Schweine verfüttert wurden (Becker & Nehring, 1969), wird die Stoppelrübe gegenwärtig nur noch selten als Schweinefuttermittel eingesetzt. Stoppelrüber weisen bei einem TM-Gehalt von ca. 8% einen Gehalt an organischer Substanz von ca. 7% auf, welche im Mittel zu 86% verdaulich ist (Burgstaller, 1991).
Tabelle 2.1: Mittlere Zusammensetzung der Stoppelrübe (Brassica rapa var. rapa) nach DLG-Futterwerttabelle (1991) nach BECKER und NEHRING (1969)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>TM</th>
<th>XA</th>
<th>OM</th>
<th>XP</th>
<th>XL</th>
<th>XF</th>
<th>NfE</th>
<th>XS</th>
<th>XZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rübe mit Blättern</td>
<td>219</td>
<td>100</td>
<td>180</td>
<td>820</td>
<td>199</td>
<td>22</td>
<td>140</td>
<td>459</td>
<td>0</td>
<td>184</td>
</tr>
<tr>
<td>Rübe ohne Blätter</td>
<td>180</td>
<td>90</td>
<td>133</td>
<td>867</td>
<td>142</td>
<td>14</td>
<td>120</td>
<td>591</td>
<td>0</td>
<td>353</td>
</tr>
<tr>
<td>Stoppelrübenblatt</td>
<td></td>
<td>9,0</td>
<td>2,2</td>
<td>-</td>
<td>1,8</td>
<td>0,3</td>
<td>1,0</td>
<td>3,7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2.1.2 Topinambur

Die Verdaulichkeit der organischen Substanz durch das Schwein liegt je nach Sorte zwischen 86 und 89% (Friesecke, 1984; Ly et al., 1994). Das Kraut der Topinambur-Pflanzen ist durch einen hohen Kohlenhydrat-Gehalt (bis zu 40% der TM) des Stängels und hohen Rohprotein-Gehalt der Blätter (bis zu 28% der TM) charakterisiert. Die Knollen sind durch ihren hohen Kohlenhydrat-Gehalt gekennzeichnet.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>% der FM</td>
<td>g/kg TM</td>
<td>% der FM</td>
<td>%</td>
</tr>
<tr>
<td>TM</td>
<td>22,0</td>
<td>220 (g/kg FM)</td>
<td>18,7 - 33,0</td>
<td>16,0 - 24,0</td>
</tr>
<tr>
<td>XA</td>
<td>1,0</td>
<td>59</td>
<td>-</td>
<td>7,9</td>
</tr>
<tr>
<td>XP</td>
<td>1,8</td>
<td>92</td>
<td>1,9 - 3,2</td>
<td>9,7</td>
</tr>
<tr>
<td>XL</td>
<td>0,2</td>
<td>8</td>
<td>0,1 - 0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>XF</td>
<td>1,0</td>
<td>41</td>
<td>0,6 - 0,8</td>
<td>4,8</td>
</tr>
<tr>
<td>XS</td>
<td>-</td>
<td>724</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XZ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NfE</td>
<td>16,0</td>
<td>800</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2.1.3 Weidelgras

Ein Weideversuch mit wachsenden Mastschweinen im Freiland wurde von Gustafson & Stern (2003) durchgeführt. Hierbei wurde die Konzentratfuttergabe um 15% gegenüber den Empfehlungen für Stallhaltung erhöht. Die Tiere nahmen zusätzlich zum Konzentratfutter 8 bis 10% TM und 4 bis 6% ME über das Weidegras auf. Die Tageszunahmen reichten von 879 bis 912 g. Es fanden sich jedoch keine Angaben zu der vorherrschenden Vegetationszusammensetzung. Bellof et al. (1998) untersuchten den Einsatz von Grassilage unter Stallbedingungen. Die Tiere wurden mit 30 kg LM aufgestallt und hatten mit 105 kg LM ihr Mastendgewicht erreicht. Ab der Mittelmast mit 45 kg LM wurden 5 bis 11% (0,1 bis 0,3 kg) Kraftfutter durch 0,4 bis 1,6 kg Grassilage substituiert. In der Mittel- und Endmast konnten für 60 kg Zuwachs 19 kg Kraftfutter durch 70 kg Grassilage eingespart werden. Der Verdauungsquotient für die gefütterte Grassilage wurde mittels Differenzversuch ermittelt.
und betrug für die Organische Masse 59%. In der Endmast lag die Grassilageaufnahme bei 16% des TM-Gehaltes der Gesamtration. Die täglichen Zunahmen lagen bei 639 g gegenüber 677 g, die im Mittel von den Tieren der Kontroll-Variante erreicht wurden.

2.1.4 Klegrassilage

Danielsen et al. (1999) fütterten Mastschweine mit einem Anfangsgewicht von 25 kg bis zu einem Endgewicht von 100 kg mit Kraftfutter und Kleegrassilage und Grassilage *ad libitum*. Außerdem wurde eine Vergleichsgruppe mit 70% der Kraftfuttermenge der Kontroll-Variante und ebenfalls mit Silage *ad libitum* gefüttert. Im ersten Fall betrug der Anteil an der Gesamtenergieaufnahme aus der Silage 4%, im zweiten Fall 5 bis 6%. Die Tageszunahmen der Variante mit geringer Kraftfuttergabe reduzierten sich um 10%, die Futterverwertung verbesserte sich dagegen um 9 bis 10%.

Die beschriebenen Versuche fanden sowohl unter Stall- als auch unter Freilandbedingungen statt, wobei die Raufutteraufnahme selbst nicht exakt erfasst wurde. Die Quantifizierung der Futteraufnahme stellt jedoch eine maßgebliche Größe dar, um die Futterverwertung und das Leistungspotential einer Ration einschließlich des Raufuttereinsatzes zu ermitteln.

2.1.5 Maissilage

2.2 Verwertung von Futtermitteln

2.2.1 Quantifizierung der Raufutteraufnahme durch Marker

Bei Verdaulichkeitsversuchen im Stall können durch die Haltung der Tiere in Einzelkäfigen zu verabreichende Futtermittelmengen und der dabei anfallende Kot und Harn durch Wägung und Sammlung erfasst und die Verwertung direkt ermittelt werden. Um unter Freilandbedingungen die Menge an aufgenommenen Futtermitteln zu bestimmen, ist zusätzlich ein interner Marker im Futtermittel oder die Bestimmung der Verdaulichkeit der eingesetzten Futtermittel durch in vivo- oder in vitro-Methoden erforderlich.

2.2.2 In vitro Verdaulichkeit von Raufuttermitteln

2.2.3 Einfluss von Raufuttermitteln auf die mikrobielle Aktivität im Schweinekot

Mit steigenden Gehalten von bakteriell fermentierbaren Substanzen in der Futtermatrix nimmt das Mikrobenwachstum im Dickdarm und damit die Menge an organisch gebundenen Kot-N zu (Kirchgessner et al., 1991; Kreuzer et al., 1998). Die N-Ausscheidung verschiebt sich vom Harn zum Kot, wodurch die Menge an weniger leicht-emittierbarem Harnstickstoff bezogen auf die gesamte ausgeschiedene Stickstoffmenge deutlich reduziert wird (Canh et al., 1998). Der mit dem Kot ausgeschiedene Stickstoff ist dagegen überwiegend im bakteriellen Eiweiß gebunden und gegenüber Abbauprozessen deutlich widerstandsfähiger.
3 Material und Methoden

3.1 Versuchsduurchführung

3.1.1 Haltung

3.1.2 Versuchstiere

Einen genauen Überblick über die eingesetzte Genetik in den jeweiligen Mastdurchgängen gibt Tabelle 3.1.

<table>
<thead>
<tr>
<th>Mastdurchgang</th>
<th>Rassen</th>
<th>Anteil jeweilige Genetik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pietrain x (Duroc x Deutsche Landrasse)</td>
<td>Pi = 50%, DL = 25%, Du = 25%</td>
</tr>
<tr>
<td>2, 3, 4</td>
<td>Pietrain x (Large White x (Englische Landrasse x Duroc))</td>
<td>Pi = 50%, LW = 18,75%, EL = 18,75%, Du = 12,5%</td>
</tr>
</tbody>
</table>

Bei jedem Mastdurchgang wurde wie folgt verfahren: die Tiere wurden mit einem Gewicht von ca. 23 bis 25 kg geliefert und in 20er-Gruppen in einem Stall untergebracht. Unmittelbar nach der Anlieferung wurden die Ferkel gewogen und mit Ohrmarken versehen, um eine Einzeltiererkennung zu ermöglichen. Die Tiere wurden entsprechend der Lebendmasse gleichmäßig auf die Varianten verteilt, um eine homogene Verteilung in den Varianten zu erreichen. Um die Tiere möglichst ohne Wurmbelastung auf die Flächen zu bringen, wurde den Ferkeln ein bis zwei Tagen nach der Eingewöhnung das Entwurmungsmittel Frommex® mit dem Wirkstoff Flubendazol über 10 Tage in das Anfangsmastfutter eingemischt. Anschließend wurden die Schweine auf die für jede Variante vorgesehene Fläche verbracht.

3.1.3 Fütterung und Tränke

Kraftfuttergabe

Tabelle 3.2: Richtwerte für die Nährstoff- und Energieversorgung von Mastschweinen (GfE, 2006)¹

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Anfangsmast (30-70 kg LM)</th>
<th>Endmast (70-120 kg LM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME (MJ/Tag)</td>
<td>18 - 27</td>
<td>27 - 36</td>
</tr>
<tr>
<td>pcv Rohprotein (g/Tag)</td>
<td>197 - 196</td>
<td>196 - 192</td>
</tr>
<tr>
<td>pcv Lys zu pcv essentielle AS</td>
<td>1 (Lys) : 0,53-0,56</td>
<td>0,63-0,66 (Thr) : 0,18 (Trp)</td>
</tr>
<tr>
<td>pcv Lysin (g/Tag)</td>
<td>13,6 - 13,2</td>
<td>13,2 - 12,9</td>
</tr>
<tr>
<td>pcv Methionin/Cystein (g/Tag)</td>
<td>7,2 - 7,4</td>
<td>7,4 - 7,5</td>
</tr>
<tr>
<td>pcv Threonin (g/Tag)</td>
<td>8,4 - 8,6</td>
<td>8,6 - 8,7</td>
</tr>
<tr>
<td>pcv Tryptophan (g/Tag)</td>
<td>2,3</td>
<td>2,3 - 2,4</td>
</tr>
</tbody>
</table>

¹ Die Werte entsprechen den GfE-Empfehlungen für Schweine mit einer Lebendmassezunahme von 700 g/d.

Tabelle 3.3: Tägliche Futtermenge pro Tier in den Kontroll- und Versuchs-Varianten

<table>
<thead>
<tr>
<th>Mastwoche</th>
<th>Gewichtsbereich (kg)</th>
<th>Futtermenge (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>von/bis</td>
<td>Kontroll-Variante¹</td>
</tr>
<tr>
<td>1.</td>
<td>23,0/26,5</td>
<td>1,10</td>
</tr>
<tr>
<td>2.</td>
<td>26,5/30,5</td>
<td>1,30</td>
</tr>
<tr>
<td>3.</td>
<td>30,5/35,0</td>
<td>1,45</td>
</tr>
<tr>
<td>4.</td>
<td>35,0/39,5</td>
<td>1,60</td>
</tr>
<tr>
<td>5.</td>
<td>39,5/44,5</td>
<td>1,75</td>
</tr>
<tr>
<td>6.</td>
<td>44,5/49,5</td>
<td>1,90</td>
</tr>
<tr>
<td>7.</td>
<td>49,5/54,5</td>
<td>2,00</td>
</tr>
<tr>
<td>8.</td>
<td>54,5/60,0</td>
<td>2,20</td>
</tr>
<tr>
<td>9.</td>
<td>60,0/65,5</td>
<td>2,35</td>
</tr>
<tr>
<td>10.</td>
<td>65,5/71,0</td>
<td>2,50</td>
</tr>
<tr>
<td>11.</td>
<td>71,0/76,5</td>
<td>2,60</td>
</tr>
<tr>
<td>12.</td>
<td>76,5/82,0</td>
<td>2,70</td>
</tr>
<tr>
<td>13.</td>
<td>82,0/87,5</td>
<td>2,80</td>
</tr>
<tr>
<td>14. bis Mastende</td>
<td>87,5/Endgewicht</td>
<td>2,90</td>
</tr>
</tbody>
</table>

¹ Menge entspricht dem benötigtem KF für 750 g TZ bei Stallhaltung nach GfE-Empfehlungen
² Menge entspricht in der Anfangsmast 85% bzw. in der Endmast 70% der KF-Menge der Kontroll-Variante

Auf den Flächen wurde die Futtermischung einmal täglich zugeteilt, um eine maximale Raufutteraufnahme zu erreichen. Vor dem Umtrieb auf die Endmastflächen wurden alle Tiere nochmals über einen Zeitraum von 10 Tagen mit Frommex® entwurmt.

Fütterung zur Probennahme

Raufutter

Tränke
Im Sommer wurden die Tiere aus Metallwannen getränkt, die wegen Verschmutzung regelmäßig gesäubert werden mussten. Pro Tier und Tag wurden 10 l Wasser veranschlagt. Im Winter während der Frostperiode befand sich in jeder Hütte ein Wassertank mit einem nutzbaren Wasservolumen von 800 Litern. Durch die Wärmebildung in den Hütten konnte ein Einfrieren des Tränkwassers verhindert werden. Die Tanks waren mit je zwei Tränkenippeln ausgestattet und wurden nach Bedarf gefüllt.

3.1.4 Erfasste Parameter und Analysen (Feld)

3.1.4.1 Wiegungen

3.1.4.2 Nährstoffanalysen der Futterproben

3.1.4.3 Analysen von Kot- und Bodenproben

3.1.5 Erfassung von Leistungs- und Gesundheitsdaten am Schlachthof

Tabelle 3.4: Parameter der Schlachtleistung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlachtgewicht (kg)</td>
<td>Gewicht der Schlachtkörperhälften, warm</td>
</tr>
<tr>
<td>Muskelfleischanteil (%)</td>
<td>Errechnet unter Verwendung von SM und FM</td>
</tr>
<tr>
<td>Handelsklasse</td>
<td>Definiert durch MfA: [\geq 55% \text{ MfA (E)}; 50 - 55% \text{ MfA (U)}; 45 - 50% \text{ MfA (R)}; 40 - 45% \text{ MfA (O)}; \leq 40% \text{ MfA (P)}]</td>
</tr>
<tr>
<td>Speckmaß (mm)</td>
<td>Ermittelt durch Zweipunkteverfahren, FOM- oder AutoFOM-Klassifizierung</td>
</tr>
<tr>
<td>Fleischmaß (mm)</td>
<td>Ermittelt durch Zweipunkteverfahren, FOM- oder AutoFOM-Klassifizierung</td>
</tr>
<tr>
<td>pH1-Rückenmuskel</td>
<td>pH-Wert 45 min nach der Schlachtung</td>
</tr>
</tbody>
</table>

Tabelle 3.5: Befunderfassung an Schlachtkörper und Organen

<table>
<thead>
<tr>
<th>Art der Veränderungen</th>
<th>Art der Veränderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlachtkörperveränderungen</td>
<td></td>
</tr>
<tr>
<td>Brustfellentzündung 1)</td>
<td>geringgradig (> 5-Mark-Stück-groß),</td>
</tr>
<tr>
<td></td>
<td>mittelgradig (5-Mark-Stück- bis handflächengroß),</td>
</tr>
<tr>
<td></td>
<td>hochgradig (> handflächengroß)</td>
</tr>
<tr>
<td>Bauchfellentzündung</td>
<td>geringgradig, mittelgradig, hochgradig</td>
</tr>
<tr>
<td>Hautveränderungen</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Abszesse</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Gelenkveränderungen</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Nierenveränderungen</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Organveränderungen</td>
<td></td>
</tr>
<tr>
<td>Leberparasiten</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Leberentzündungen</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Leber ausputzen a) (= Milkspots geringgradig)</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Leber verwerfen a) (= Milks spots hochgradig)</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Lungenveränderungen 2)</td>
<td>geringgradig (< 10% Ausdehnung),</td>
</tr>
<tr>
<td></td>
<td>mittelgradig (10 - 30% Ausdehnung),</td>
</tr>
<tr>
<td></td>
<td>hochgradig (>30% Ausdehnung)</td>
</tr>
<tr>
<td>Herzeutelelentzündungen</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Darmparasiten</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Verwachsigungen</td>
<td>Ja, Nein</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>Ja, Nein</td>
</tr>
</tbody>
</table>

1) Charakterisierung der Veränderung nach BLAHA (1993)

3.2 Untersuchungen zur in vitro Verdaulichkeit

3.2.1 Enzymatische in vitro Verdaulichkeit (Boisen und Fernandez, 1997)

3.2.2 Dickdarmsimulierte in vitro Fermentation (Williams et al., 2005)

Um zu prüfen, ob die Fermentation durch unterschiedliche Inokula beeinflusst wird, wurden für die eigene Untersuchung zwei unterschiedliche Inokula, ein Kontroll- und ein Raufutter-Inokulum, eingesetzt. Als Donoren für das Kontroll-Inokulum dienten Schweine, die ausschließlich mit einem herkömmlichen Kraftfutter (Tab. 3.6) gefüttert wurden. Das Raufutter-Inokulum stammte von Schweinen, die eine um 30% reduzierte Kraftfuttermenge sowie zusätzlich eine Mixtur aus Weidegras- und Kleegrassilage ad libitum erhielten.

Tabelle 3.6: Zusammensetzung der Standardration für Schweine

<table>
<thead>
<tr>
<th>Futterbestandteile</th>
<th>g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weizenkleie</td>
<td>200</td>
</tr>
<tr>
<td>Rapsextraktionsschrot</td>
<td>200</td>
</tr>
<tr>
<td>Tapioka</td>
<td>200</td>
</tr>
<tr>
<td>Gerste</td>
<td>150</td>
</tr>
<tr>
<td>Maismehl</td>
<td>133</td>
</tr>
<tr>
<td>Weizenmehl</td>
<td>50</td>
</tr>
<tr>
<td>Calcium</td>
<td>5</td>
</tr>
<tr>
<td>Palmöl</td>
<td>16</td>
</tr>
<tr>
<td>Vinasse</td>
<td>40</td>
</tr>
<tr>
<td>Premix</td>
<td>6</td>
</tr>
</tbody>
</table>
3.2.3 Enzymatische Vorbehandlung mit anschließender Fermentation

Die Inkubation der Futtermittelproben fand wie in Kapitel 3.2.2 beschrieben, jedoch mit einem vorbehandelten Ausgangsmaterial statt. Vor der in vitro Fermentation wurden Futtermittelproben zunächst mit Enzymen vorbehandelt. Diese Vorbehandlung sollte die praecaecale Verdaulichkeit nachbilden, die anschließende Fermentation die caecale Verdaulichkeit. Geprüft wurde, ob sich die Ergebnisse von denen der oben beschriebenen Methoden unterscheiden.

4 Ergebnisse

4.1 Produktionsleistungen

4.1.1 Nährstoffgehalte der Aufwühne und der Futtermittel

Die Tabelle 4.1 gibt die mittleren Werte der Rohnährstoffanalysen der eingesetzten Futtermittel und ihre Standardabweichung wieder. Generell weichen die Nährstoffgehalte der Feldfuttermittel nur geringfügig von entsprechenden Referenzwerten aus Futterwerttabellen ab (siehe Kapitel 2.1). Im Folgenden wird auf einzelne Unterschiede hinsichtlich der Analysewerte der jeweiligen Futtermittel näher eingegangen.

<table>
<thead>
<tr>
<th></th>
<th>TM g/kg FM</th>
<th>XA g/kg TM</th>
<th>XP g/kg TM</th>
<th>XL g/kg TM</th>
<th>XF g/kg TM</th>
<th>XS g/kg TM</th>
<th>XZ g/kg TM</th>
<th>OM</th>
<th>Energie MJ ME/kg TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsmastfutter (n=8)</td>
<td>861 ± 4</td>
<td>52 ± 4</td>
<td>189 ± 7</td>
<td>59,9 ± 5</td>
<td>40 ± 4</td>
<td>500 ± 7</td>
<td>40 ± 5</td>
<td>948 ± 0,4</td>
<td>15,9 ± 0,4</td>
</tr>
<tr>
<td>Endmastfutter (n=8)</td>
<td>859 ± 6</td>
<td>50 ± 3</td>
<td>166 ± 9</td>
<td>58,1 ± 4</td>
<td>44 ± 2</td>
<td>508 ± 6</td>
<td>41 ± 2</td>
<td>950 ± 0,2</td>
<td>15,5 ± 0,2</td>
</tr>
<tr>
<td>Kleegrassilage (n=4)</td>
<td>427 ± 21</td>
<td>117 ± 12</td>
<td>186 ± 14</td>
<td>36,3 ± 2,5</td>
<td>225 ± 0</td>
<td>0 ± 0,0</td>
<td>98 ± 45</td>
<td>883 ± 0,6</td>
<td>7,1 ± 0,1</td>
</tr>
<tr>
<td>Maissilage (n=4)</td>
<td>325 ± 18</td>
<td>45 ± 2</td>
<td>82 ± 2</td>
<td>37,9 ± 1,3</td>
<td>191 ± 0</td>
<td>313 ± 0</td>
<td>0 ± 0,0</td>
<td>955 ± 0,7</td>
<td>8,8 ± 0,7</td>
</tr>
<tr>
<td>Stoppelrübe (n=4)</td>
<td>70 ± 4</td>
<td>162 ± 4</td>
<td>167 ± 2</td>
<td>10,1 ± 1,2</td>
<td>159 ± 0</td>
<td>12 ± 0,0</td>
<td>310 ± 0</td>
<td>838 ± 0,7</td>
<td>9,1 ± 0,7</td>
</tr>
<tr>
<td>Stoppelrübenkraut (n=2)</td>
<td>93 ± 4</td>
<td>245 ± 15</td>
<td>234 ± 19</td>
<td>27,4 ± 1,0</td>
<td>199 ± 0</td>
<td>12 ± 0,0</td>
<td>74 ± 0,0</td>
<td>755 ± 0,7</td>
<td>7,0 ± 0,7</td>
</tr>
<tr>
<td>Topinambur-Knolle (n=8)</td>
<td>210 ± 19</td>
<td>69 ± 13</td>
<td>72 ± 10</td>
<td>6,9 ± 1,4</td>
<td>44 ± 5</td>
<td>0 ± 0,0</td>
<td>718 ± 0</td>
<td>931 ± 0,13</td>
<td>13,9 ± 0,12</td>
</tr>
<tr>
<td>Topinambur-Kraut (n=2)</td>
<td>191 ± 15</td>
<td>153 ± 19</td>
<td>131 ± 9</td>
<td>19,4 ± 0,5</td>
<td>286 ± 0</td>
<td>0 ± 0,0</td>
<td>95 ± 0</td>
<td>847 ± 0,4</td>
<td>4,4 ± 0,4</td>
</tr>
<tr>
<td>Weidelgras (n=8)</td>
<td>241 ± 29</td>
<td>241 ± 23</td>
<td>133 ± 9</td>
<td>20,0 ± 4,2</td>
<td>269 ± 0</td>
<td>0 ± 0,0</td>
<td>82 ± 11</td>
<td>858 ± 0,5</td>
<td>4,7 ± 0,5</td>
</tr>
</tbody>
</table>

1 Stärke-Fraktion wird nach Hydrolyse der Zucker-Fraktion zugeschrieben

Die Stoppelrübe kam in der Endmast zum Einsatz. Der Zuckergehalt fiel mit 31% geringer aus als entsprechende Angaben (35%) in der DLG-Futterwerttabelle (DLG, 1991). Das Stoppelrübenkraut wurde nur im vierten Mastdurchgang beprobt und analysiert, da es im zweiten Mastdurchgang beim Auftrieb der Tiere bereits abgefroren war. Der Rohproteingehalt war mit 23% vs. 20% geringfügig höher gegenüber dem Referenzwert von Becker & Nehring (1969), der Rohfasergehalt betrug 20% vs. 11%. Das Kraut wurde von den Tieren gut akzeptiert, während die Rüben nur sehr zögerlich verzehrt wurden.

Weidelgras wurde sowohl in der Anfangs- als auch in der Endmast eingesetzt. Durch die späte Aussaat im Frühjahr und die trockene Witterung kam es zu einem späteren Auflaufen der Saat. Die Bestandsentwicklung war entsprechend schwach ausgebildet. Auf ein Mulchen wurde aufgrund der geringen Grünmasse verzichtet. Daher war der Aufwuchs bei Auftrieb leicht überständig. Es resultierten hohe TM-Werte (21% vs. 15 bis 18%) und niedrige XP-Gehalte (13% vs. 17% und 19%) im Vergleich zu Referenzwerten, welche wiederum einen bis zu 70% niedrigeren Energiegehalt (4,7 MJ ME/kg TM vs. 10,3 MJ ME/kg TM und 10,6 MJ ME/kg TM) im Vergleich zu Jeroch et al. (1999) und LfL (2005) bedingten.

4.1.2 Lebendmasseentwicklung

4.1.2.1 Lebendmasseentwicklung in den Mastdurchgängen 1 und 3

| Tabelle 4.2: Mittlere Tageszunahmen in Anfangs- und Endmast der Mastdurchgänge 1 und 3 |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Variante | MD 1 | | | | MD 3 | | |
| | Kw | Km | MSw | MSm | | Kw | Km | MSw | MSm |
| Anfangsmast (g) | 569 | ± 61 | 557 | ± 73 | 573 | ± 61 | 659 | ± 82 | 572 | ± 57 |
| | 581 | ± 47 | 557 | ± 73 | 573 | ± 47 | 663 | ± 71 | 572 | ± 71 |
| Variante | MD 1 | | | | MD 3 | | |
| | Kw | Km | MSw | MSm | | Kw | Km | MSw | MSm |
| Endmast (g) | 727 | ± 117 | 582 | ± 96 | 566 | ± 117 | 702 | ± 90 | 596 | ± 99 |
| | 702 | ± 90 | 582 | ± 96 | 566 | ± 90 | 704 | ± 57 | 575 | ± 57 |

Im MD 1 traten in der Anfangsmast keine offensichtlichen Unterschiede zwischen den Tageszunahmen der Kontroll- und Versuchsvarianten auf. Dagegen fielen die Schweine in den Versuchsvarianten mit durchschnittlich 582 bzw. 566 g Tageszunahmen gegenüber den Tieren der Kontrollvariante mit 727 g bzw. 702 g Tageszunahmen deutlich ab. In der
Anfangsmast des MD 3 erreichten die Schweine der Kontrollvariante ca. 100 g höhere Tageszunahmen als die Schweine in den Versuchsvarianten. Dagegen erreichten die Schweine in den Raufutter-Varianten in der Endmast des MD 3 ähnlich hohe Tageszunahmen wie die Kontrolltiere. Es kann davon ausgegangen werden, dass mit der ad libitum Aufnahme von Weidelgras die um 30% reduzierte Kraftfuttermenge im dritten Mastdurchgang zumindest teilweise ausglichen werden konnte, während dies im ersten Mastdurchgang aufgrund eines durch einen sehr trockenen Sommer bedingten lückenhaften Bestand nicht gelang.

4.1.2.2 Lebendmasseentwicklung in den Mastdurchgängen 2 und 4

Die Anfangsmast beider MD dauerte wie geplant bei allen Fütterungsvarianten 9 Wochen. Nach Ablauf der AM wiesen die Tiere des MD 2 durchschnittliche Lebendmassen von 62 bis 69 kg, die Schweine des MD 4 von 68 und 70 kg auf (siehe Tabelle A 2 im Anhang). Anhand der Standardabweichungen bei den Umtriebsgewichten wird ersichtlich, dass die Lebendmasseentwicklung zwischen den Einzeltieren innerhalb der Fütterungsvarianten analog zu MD 1 und 3 erheblich variierte. Die durchschnittlichen Tageszunahmen der Anfangs- und Endmast der beiden MD sind in Tabelle 4.3 dargestellt.

Tabelle 4.3: Mittlere Tageszunahmen in Anfangs- und Endmast der Mastdurchgänge 2 und 4

<table>
<thead>
<tr>
<th>Variante</th>
<th>MD 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>MD 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kₘ/w SRₘ/w</td>
<td>WGₘ/w</td>
<td>TKₘ</td>
<td>TKₘ</td>
<td>Kₘ/w SRₘ/w</td>
<td>WGₘ/w</td>
<td>TGₘ</td>
<td>TGₘ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangsmast (g)</td>
<td>574 579 529</td>
<td>595 630</td>
<td>± 62</td>
<td>± 84</td>
<td>631 632 577</td>
<td>623 627</td>
<td>± 61</td>
<td>± 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 86 ± 122</td>
<td>± 84</td>
<td>± 122</td>
<td>± 84</td>
<td>± 75 ± 93</td>
<td>± 78</td>
<td>± 48</td>
<td>± 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endmast (g)</td>
<td>479 455 438</td>
<td>504 481</td>
<td>± 65</td>
<td>± 90</td>
<td>542 512 529</td>
<td>651 600</td>
<td>± 42</td>
<td>± 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 73 ± 81</td>
<td>± 123</td>
<td>± 81</td>
<td>± 123</td>
<td>± 48 ± 71</td>
<td>± 78</td>
<td>± 48</td>
<td>± 71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Anfangsmast beider Mastdurchgänge varierten die TZ von 529 bis 632 g. Im MD 2 erreichten die Tiere der Topinambur-Variante mit 595 bis 630 g täglichen Zunahmen die höchsten Zunahmen, während die Tiere der Weidelgras-Variante mit 529 g am schlechtesten abschnitten. Dies lag wahrscheinlich in der Qualität des Weidelgras-Aufwuchses begründet. Dieser stammte aus dem Vorjahr, war bei Auftrieb überständig und hatte durch Bodenverdichtung keinen starken Bestand gebildet. Die Kontroll-Variante wies mit 574 g knapp 10% niedrigere Tageszunahmen als die männliche Topinambur-Variante auf. In der Endmast wurde mit durchschnittlichen Tageszunahmen zwischen 438 und 504 g in allen Varianten nur ein sehr niedriges Niveau erreicht. Es ist zu vermuten, dass dies vor allem durch die kalte Jahreszeit bedingt war, da trotz des erhöhten Energiebedarfes versuchsbedingt keine Anpassung der Futterration vorgenommen wurde. Im vierten MD wurden höhere Zunahmen realisiert als im zweiten MD. In der Anfangsmast wiesen die Tiere der Topinambur-Variante, die das Kraut der Pflanzen erhielten, mit der Kontroll- und Stoppelrübenvariante vergleichbare Zuwachsraten auf. In der Endmast erreichten die männlichen und weiblichen Schweine bei der Nutzung von Topinambur-Knollen wie in MD 2...
die höchsten Tageszunahmen, gefolgt von der Kontroll- und den Kleebras-Varianten. Letztere zeigten mit 512 und 529 g die geringsten Zunahmen.

4.1.2.3 Beitrag des Raufutters zur Lebendmasseentwicklung
Da allen Raufutter-Varianten die gleichen Kraftfuttermengen zugeteilt wurden, kann gefolgt werden, dass die Unterschiede in den durchschnittlichen Tageszunahmen zwischen den Kontroll- und Versuchsvarianten auf Unterschiede in der Nährstoffversorgung über die Raufutteraufnahme zurückgeführt werden können. Entsprechend kann für die MD 2 und 4 eine Rangierung der eingesetzten Raufuttermittel hinsichtlich ihres Beitrages zur Lebendmasseentwicklung vorgenommen werden. Danach ergibt sich folgende Reihenfolge:

MD 2: Anfangsmast: Topinambur-Knolle > Stoppelrübe > Weidelgras
 Endmast: Topinambur-Knolle > Kleegrassilage

MD 4: Anfangsmast: Stoppelrübe > Topinambur-Grün > Weidelgras
 Endmast: Topinambur-Knolle > Kleegrassilage

Das Angebot von Topinambur-Knollen als Feldfrucht war geeignet, den reduzierten Kraftfuttereinsatz sowohl in der Anfangs- als auch in der Endmast hinsichtlich des Lebendmassezuwachses auszugleichen bzw. zu übertreffen. Dies gelang ansonsten nur durch die Vorlage von Maissilage in MD 1, nicht jedoch mit den übrigen Raufuttermitteln.

4.1.3 Schlachtleistung
Die Tiere des MD 1 und MD 3 zeigten mit durchschnittlichen Muskelfleischanteilen von knapp 54 bis 59% mit der konventionellen Erzeugung vergleichbare Resultate. Ca. 70% der Schlachtkörper wurden E-klassifiziert (siehe Tabelle A 4 im Anhang). Die Speckmaße varieren von 12,1 bis 18,6 mm, die Fleischmaße von 53,8 bis 59,9 mm. Aufgrund der veränderten Fütterungssituation zwischen Anfangs- und Endmast in den Versuchsvarianten sind die Ergebnisse zwischen Kontroll- und Versuchsgruppen nur bedingt aussagefähig. Allerdings kann geschlussfolgert werden, dass die Freilandbedingungen und die Verfütterung von Raufutterkomponenten guten Schlachtleistungen nicht zuwiderlaufen.

Innerhalb der Kontroll- und der Versuchsvarianten wiesen die männlichen Tiere tendenziell ein höheres Speck- und ein niedrigeres Fleischmaß auf als die weiblichen Tiere. Die pH-Werte varieren kaum und liegen alle mit 6,2 bis 6,3 über dem Grenzwert 6,0, welches auf eine sehr gute Fleischbeschaffenheit schließen lässt.
Die Ausschlachtung lag für alle Fütterungsvarianten der MD 1 und 3 zwischen 73,7 und 76,3%. Es wurden für die Kontrolltiere höhere Werte erwartet, da der GIT durch die angenommene ausschließliche Kraftfutteraufnahme leichter ist und somit zu einer höheren Ausschlachtung von knapp 80% führt. Es ist anzunehmen, dass die Kontrolltiere durch Bodenaufnahme ebenfalls einen schwereren GIT aufwiesen und die geringere Ausschlachtung daher resultierte. Tabelle 4.4 gibt die mittleren Schlachtgewichte, den Muskelfleischanteil sowie Speck- und Fleischmaß und den pH-Wert in den MD 1 und 3 wieder.

Tabelle 4.4: Mittlere Schlachtleistungen der Tiere der Mastdurchgänge 1 und 3

<table>
<thead>
<tr>
<th>Variante</th>
<th>MD 1</th>
<th></th>
<th></th>
<th></th>
<th>MD 3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_w</td>
<td>K_m</td>
<td>MS/ WG_w</td>
<td>MS/ WG_m</td>
<td>K_w</td>
<td>K_m</td>
<td>MS/ WG_w</td>
<td>MS/ WG_m</td>
</tr>
<tr>
<td>Schlachtgewicht</td>
<td>91,0</td>
<td>94,0</td>
<td>90,0</td>
<td>88,0</td>
<td>94,7</td>
<td>93,3</td>
<td>94,9</td>
<td>94,3</td>
</tr>
<tr>
<td>(kg)</td>
<td>± 5,8</td>
<td>± 4,1</td>
<td>± 4,9</td>
<td>± 3,7</td>
<td>± 6,6</td>
<td>± 7,5</td>
<td>± 3,8</td>
<td>± 4,6</td>
</tr>
<tr>
<td>Muskelfleischanteil</td>
<td>58,1</td>
<td>56,1</td>
<td>58,9</td>
<td>57,3</td>
<td>55,8</td>
<td>55,2</td>
<td>57,0</td>
<td>53,8</td>
</tr>
<tr>
<td>(%)</td>
<td>± 2,1</td>
<td>± 2,0</td>
<td>± 2,0</td>
<td>± 2,2</td>
<td>± 2,2</td>
<td>± 3,1</td>
<td>± 2,0</td>
<td>± 2,7</td>
</tr>
<tr>
<td>Speckmaß</td>
<td>13,7</td>
<td>15,9</td>
<td>12,1</td>
<td>13,6</td>
<td>16,9</td>
<td>17,4</td>
<td>15,1</td>
<td>18,6</td>
</tr>
<tr>
<td>(mm)</td>
<td>± 2,3</td>
<td>± 2,4</td>
<td>± 2,2</td>
<td>± 2,8</td>
<td>± 2,5</td>
<td>± 3,0</td>
<td>± 2,5</td>
<td>± 2,9</td>
</tr>
<tr>
<td>Fleischmaß</td>
<td>58,7</td>
<td>57,9</td>
<td>56,2</td>
<td>53,8</td>
<td>59,9</td>
<td>59,8</td>
<td>58,9</td>
<td>57,6</td>
</tr>
<tr>
<td>(mm)</td>
<td>± 4,5</td>
<td>± 3,9</td>
<td>± 4,8</td>
<td>± 4,7</td>
<td>± 3,1</td>
<td>± 6,0</td>
<td>± 2,5</td>
<td>± 3,6</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>6,3</td>
<td>6,3</td>
<td>6,3</td>
<td>6,3</td>
<td>6,2</td>
<td>6,2</td>
<td>6,2</td>
<td>6,3</td>
</tr>
<tr>
<td></td>
<td>± 1,0</td>
<td>± 0,1</td>
</tr>
<tr>
<td>Ausschlachtung</td>
<td>76,0</td>
<td>76,3</td>
<td>74,5</td>
<td>73,7</td>
<td>75,7</td>
<td>76,0</td>
<td>74,9</td>
<td>75,1</td>
</tr>
<tr>
<td>(%)</td>
<td>± 1,8</td>
<td>± 1,5</td>
<td>± 2,3</td>
<td>± 3,0</td>
<td>± 2,3</td>
<td>± 3,1</td>
<td>± 1,8</td>
<td>± 1,6</td>
</tr>
</tbody>
</table>

Die Tiere des MD 2 und 4 zeigten durchweg hohe mittlere Muskelfleischanteile, die von knapp 57 bis 59% reichten. Mit ca. 86% der Schachtkörper wurden 16% mehr Tiere E-klassifiziert als bei den MD 1 und 3 (siehe Tabelle A 5 im Anhang). Dies kann möglicherweise auf die kalte Jahreszeit und dem entsprechend noch langsameren Wachstum bei der restriktiven Kraftfutterfütterung zurückgeführt werden. Auch kann der Einsatz von Raufutter im Zusammenhang mit dem Muskel- und Fettansatz stehen. Die Speckmaße variierten von 13,2 bis 15,6 mm und damit nicht so stark wie die des MD 1 und 3 (12,1 bis 18,6). Die Fleischmaße reichten von 56,9 bis 61,7 mm und lagen im Mittel höher als die Fleischmaße des MD 1 und 3. Die pH-Werte variierten kaum und lagen wie auch bei MD 1 und 3 mit 6,2 bis 6,3 über dem gewünschten Schwellenwert von 6,0.

Die Schachtleistungen der Tiere aus den MD 2 und 4 sind in Tabelle 4.5 dargestellt.
Tabelle 4.5: Mittlere Schlachtleistungen der Mastschweine in den Mastdurchgängen 2 und 4

<table>
<thead>
<tr>
<th>Variante</th>
<th>MD 2</th>
<th>MD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>SR/</td>
</tr>
<tr>
<td>Schlachtgewicht (kg)</td>
<td>92,9</td>
<td>95,3</td>
</tr>
<tr>
<td>±3,6</td>
<td>±5,8</td>
<td>±4,8</td>
</tr>
<tr>
<td>Muskelfleischanteil (%)</td>
<td>57,1</td>
<td>56,7</td>
</tr>
<tr>
<td>±2,3</td>
<td>±2,1</td>
<td>±3,2</td>
</tr>
<tr>
<td>Speckmaß (mm)</td>
<td>14,5</td>
<td>15,0</td>
</tr>
<tr>
<td>±2,8</td>
<td>±2,6</td>
<td>±3,4</td>
</tr>
<tr>
<td>Fleischmaß (mm)</td>
<td>57,1</td>
<td>57,2</td>
</tr>
<tr>
<td>±4,0</td>
<td>±3,6</td>
<td>±4,7</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>6,3</td>
<td>6,3</td>
</tr>
<tr>
<td>Ausschlachtung (kg)</td>
<td>77,5</td>
<td>75,8</td>
</tr>
<tr>
<td>±1,4</td>
<td>±1,9</td>
<td>±1,8</td>
</tr>
</tbody>
</table>

4.1.4 Salmonellenbefunde

Tabelle 4.6: Salmonellenbefunde bei den Schlachtkörpern in den verschiedenen Mastdurchgängen

<table>
<thead>
<tr>
<th>Herkunft</th>
<th>MD 1 Betrieb A</th>
<th>MD 2 Betrieb B</th>
<th>MD 3 Betrieb B</th>
<th>MD 4 Betrieb B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Proben</td>
<td>35</td>
<td>65</td>
<td>57</td>
<td>79</td>
</tr>
<tr>
<td>positiv (Anzahl)</td>
<td>25</td>
<td>18</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>(%)</td>
<td>71,4</td>
<td>27,7</td>
<td>0</td>
<td>11,4</td>
</tr>
<tr>
<td>grenzwertig (Anzahl)</td>
<td>0</td>
<td>25</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>(%)</td>
<td>0</td>
<td>38,5</td>
<td>7</td>
<td>24,1</td>
</tr>
<tr>
<td>negativ (Anzahl)</td>
<td>10</td>
<td>22</td>
<td>53</td>
<td>51</td>
</tr>
<tr>
<td>(%)</td>
<td>28,9</td>
<td>33,8</td>
<td>93</td>
<td>64,6</td>
</tr>
</tbody>
</table>
4.2 Kot- und Bodenprobenanalyse

4.2.1 Trockenmasse und Rohaschegehalte

Die mittleren Trockenmassegehalte des Kotes in den verschiedenen Versuchsvarianten sind in Tabelle 4.7 wiedergegeben.

Tabelle 4.7: Mittlere Trockenmassegehalte des Kotes in der Anfangs- und Endmast in den verschiedenen Mastdurchgängen

<table>
<thead>
<tr>
<th>Mastdurchgang</th>
<th>Variante</th>
<th>MD 1</th>
<th>MD 2</th>
<th>MD 3</th>
<th>MD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kw</td>
<td>Km</td>
<td>MSw</td>
<td>MSm</td>
</tr>
<tr>
<td>TM Anfangsmast</td>
<td></td>
<td>32,6</td>
<td>38,5</td>
<td>29,8</td>
<td>36,7</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td>± 3,9</td>
<td>±12,6</td>
<td>± 3,9</td>
<td>± 9,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kw</td>
<td>Km</td>
<td>WGw</td>
<td>WGm</td>
</tr>
<tr>
<td>TM Endmast</td>
<td></td>
<td>33,3</td>
<td>31,7</td>
<td>27,1</td>
<td>28,8</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td>± 5,3</td>
<td>± 4,9</td>
<td>± 2,8</td>
<td>± 5,9</td>
</tr>
</tbody>
</table>

Tabelle 4.8: Mittlere Rohaschegehalte des Kotes in der Anfangs- und Endmast in den verschiedenen Mastdurchgängen

<table>
<thead>
<tr>
<th>Mastdurchgang</th>
<th>MD 1</th>
<th></th>
<th></th>
<th>MD 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>M</td>
<td>K</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>XA-Gehalt Anfangsmast (%) in TM</td>
<td>K</td>
<td>K</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>MD 1</td>
<td>44,0</td>
<td>48,4</td>
<td>39,7</td>
<td>50,8</td>
<td>54,2</td>
<td>49,0</td>
</tr>
<tr>
<td>± 15,9</td>
<td>± 22,1</td>
<td>± 10,2</td>
<td>± 16,4</td>
<td>± 5,3</td>
<td>± 9,2</td>
<td>± 10,8</td>
</tr>
<tr>
<td>MD 3</td>
<td>39,7</td>
<td>41,6</td>
<td>41,0</td>
<td>41,0</td>
<td>41,0</td>
<td>41,0</td>
</tr>
<tr>
<td>MD 2</td>
<td>45,8</td>
<td>41,9</td>
<td>42,6</td>
<td>48,9</td>
<td>39,6</td>
<td>38,6</td>
</tr>
<tr>
<td>± 14,7</td>
<td>± 9,6</td>
<td>± 8,6</td>
<td>± 11,9</td>
<td>± 10,6</td>
<td>± 8,7</td>
<td>± 8,3</td>
</tr>
<tr>
<td>MD 4</td>
<td>42,5</td>
<td>45,2</td>
<td>35,4</td>
<td>43,1</td>
<td>37,3</td>
<td>37,9</td>
</tr>
<tr>
<td>± 5,9</td>
<td>± 4,0</td>
<td>± 6,9</td>
<td>± 7,3</td>
<td>± 5,3</td>
<td>± 11,1</td>
<td>± 9,3</td>
</tr>
</tbody>
</table>

4.2.2 pH-Werte im Kot

Die pH-Werte im Kot von Schweinen, die im Stall gehalten und nur mit Kraftfuttermittel ohne Raufuttermittel gefüttert wurden, weisen Werte zwischen 6,5 und 6,8 auf (Jensen & Jørgensen, 1994; Duda, 2004). Da in der eigenen Untersuchung sowohl die Tiere der Kontroll- als auch der Versuchsvarianten im Mittel niedrigere Werte als die Referenzgrößen aus der Literatur aufwiesen, bleibt offen, welchen Faktoren hierfür mitverantwortlich sind.
Tabelle 4.9: Mittlere pH-Werte des Kotes in der Anfangs- und Endmast in den verschiedenen Mastdurchgängen

<table>
<thead>
<tr>
<th>Mastdurchgang</th>
<th>MD 1</th>
<th>MD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>K_w K_m MS_w MS_m</td>
<td>K_w K_m MS_w MS_m</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>5,84 6,28 5,79 6,40</td>
<td>5,81 5,88 5,81 5,91</td>
</tr>
<tr>
<td>Anfangsmast</td>
<td>± 0,25 ± 0,53 ± 0,29 ± 0,88</td>
<td>± 0,35 ± 0,38 ± 0,23 ± 0,37</td>
</tr>
<tr>
<td>Variante</td>
<td>K_w K_m WG_w WG_m</td>
<td>K_w K_m WG_w WG_m</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>6,17 6,44 6,25 6,30</td>
<td>6,31 6,25 6,21 5,88</td>
</tr>
<tr>
<td>Endmast</td>
<td>± 0,40 ± 0,40 ± 0,25 ± 0,26</td>
<td>± 0,25 ± 0,26 ± 0,26 ± 0,19</td>
</tr>
</tbody>
</table>

4.2.3 Titangehalte im Kot

Tabelle 4.10: Mittlerer Gehalt an Titan im Kot nach Druckaufschluss in der Anfangs- und Endmast in den verschiedenen Mastdurchgängen

<table>
<thead>
<tr>
<th>Mastdurchgang</th>
<th>MD 1</th>
<th>MD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>K_w K_m MS_w MS_m</td>
<td>K_w K_m MS_w MS_m</td>
</tr>
<tr>
<td>Titan Anfangsmast (mg/kg TM)</td>
<td>3292 3583 2809 3371</td>
<td>4047 3746 3187 3263</td>
</tr>
<tr>
<td></td>
<td>± 346 ± 291 ± 263 ± 485</td>
<td>± 796 ± 548 ± 331 ± 458</td>
</tr>
<tr>
<td>Variante</td>
<td>K_w K_m WG_w WG_m</td>
<td>K_w K_m WG_w WG_m</td>
</tr>
<tr>
<td>Titan Endmast (mg/kg TM)</td>
<td>3641 3393 3234 3421</td>
<td>3938 3819 3289 3160</td>
</tr>
<tr>
<td></td>
<td>± 305 ± 474 ± 696 ± 397</td>
<td>± 362 ± 308 ± 304 ± 520</td>
</tr>
</tbody>
</table>

35

Bei der Aufarbeitung der Proben stellte sich heraus, dass die bisherige Aufschlussweise mittels Mikrowellendruckaufschluss (VDLUFA, 2003) auch bei Anwendung einer Hochdruckvariante zu schlechten Wiederfindungsraten bei dotierten Proben führte. Als Ursache kann vermutet werden, dass durch die hohe Erdaufnahme der Tiere (siehe Kapitel 4.2.1) im Kot eine mineralstoffreiche Matrix vorlag, die zur Bildung unlöslicher Präzipitate führte. Erst durch die aufwendige Optimierung der Aufschlüsse, insbesondere der Nachbehandlung der Präzipitate mittels Flussäure auf der Heizplatte und einer weiteren Optimierung der Messbedingungen am ICP-OES konnte eine zufrieden stellende analytische Lösung des Problems gefunden werden.

Eine Gegenüberstellung der mit Druckaufschluss und Kjeldahl-Aufschluss ermittelten Werte ist im Anhang in der Tabelle A 7 wiedergegeben. Dabei waren die mittels Druckaufschluss ermittelten Analysewerte durchweg höher als diejenigen mittels Kjeldahl-Aufschluss. Letztere erreichten im Mittel ein Niveau, dass ca. 72% der Vergleichswerte entsprach. Zwischen den mittels Kjeldahl-Aufschluss und Druckaufschluss ermittelten Werten bestand zwar ein signifikanter (p < 0,05), mit r = 0,12 jedoch nur schwacher Zusammenhang. Die mittels Druck-Aufschluss bestimmten Titangehalte waren mit r = 0,46 hochsignifikant positiv mit dem Asche-Gehalt der Kotproben korreliert (p < 0,01). Demgegenüber waren die Titangehalte nach Kjeldahl-Aufschluss mit r = -0,24 signifikant negativ mit dem Asche-Gehalt der Kotproben korreliert (p < 0,01).
4.2.4 Titangehalte im Boden

Die Analyse der Titangehalte in den Bodenproben ergab einen mittleren Gehalt von 5,01 ± 0,30 g pro kg in der aus den Bodenproben gewonnenen Asche. Dabei unterschieden sich die mittleren Gehalte der Bodenproben von den Versuchsflächen mit 4,95 ± 0,22 g Titan pro kg Aschegehalt nicht signifikant von den Gehalten von benachbarten Flächen (5,35 ± 0,57), die bisher nicht von Schweinen genutzt und daher nicht über das Kraftfutter mit Titandioxid kontaminiert wurden. Damit kann weitgehend ausgeschlossen werden, dass es durch den Einsatz von Titandioxid als Marker zu einer Anreicherung auf den Versuchsflächen gekommen ist.

4.2.5 Gehalte an Seltenen Erden im Kot und im Boden

Ähnlich wie bei der Titananalytik stellte sich im Verlaufe der Untersuchungen heraus, dass die bereits etablierte Untersuchungsmethodik nicht übernommen werden konnte. Aufgrund mikrokristallinen Ausfällungen waren die Wiederfindungsraten nicht hinreichend; zudem unterschieden sich diese zwischen den Seltenen Erdelementen beträchtlich. Es liegt der Schluss nahe, dass die spezifische Zusammensetzung des Schweinekotes, bedingt durch den hohen Erdanteil, der mit dem Futter und beim Wühlen auf den Futterflächen aufgenommen wurde, die analytischen Probleme hervorgerufen hat. Gute Wiederholbarkeiten bei der Messanalytik konnten mit einem zweistufigen Aufschlussverfahren und einer Umstellung der Analytik auf ein neues ICP-OES Gerät mit einer veränderten Messgeometrie und einer

Tabelle 4.11: Mittlere Gehalte an Seltenen Erden in den Kotproben der verschiedenen Fütterungsvarianten und in Bodenproben

<table>
<thead>
<tr>
<th>Element</th>
<th>Kontroll-Variante (mg/kg XA)</th>
<th>Raufutter-Variante (mg/kg XA)</th>
<th>Bodenprobe (mg/kg XA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cer</td>
<td>74.27 ± 6.63</td>
<td>72.82 ± 8.06</td>
<td>72.15 ± 6.96</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>4.19 ± 0.44</td>
<td>4.16 ± 0.46</td>
<td>4.65 ± 0.14</td>
</tr>
<tr>
<td>Erbium</td>
<td>2.43 ± 0.45</td>
<td>2.45 ± 0.47</td>
<td>2.96 ± 0.07</td>
</tr>
<tr>
<td>Europium</td>
<td>1.17 ± 0.16</td>
<td>1.13 ± 0.16</td>
<td>1.07 ± 0.07</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>5.37 ± 0.60</td>
<td>5.24 ± 0.56</td>
<td>5.22 ± 0.24</td>
</tr>
<tr>
<td>Holmium</td>
<td>0.70 ± 0.13</td>
<td>0.68 ± 0.13</td>
<td>0.94 ± 0.02</td>
</tr>
<tr>
<td>Lanthan</td>
<td>37.31 ± 3.39</td>
<td>36.98 ± 4.20</td>
<td>36.36 ± 2.76</td>
</tr>
<tr>
<td>Lutetium</td>
<td><1 ± 0</td>
<td><1 ± 0</td>
<td>0.45 ± 0.02</td>
</tr>
<tr>
<td>Neodym</td>
<td>32.12 ± 3.38</td>
<td>31.35 ± 3.51</td>
<td>29.20 ± 1.69</td>
</tr>
<tr>
<td>Promethium</td>
<td>8.69 ± 0.82</td>
<td>8.51 ± 0.94</td>
<td>7.92 ± 0.56</td>
</tr>
<tr>
<td>Scandium</td>
<td>8.19 ± 2.43</td>
<td>8.55 ± 2.83</td>
<td>8.06 ± 0.81</td>
</tr>
<tr>
<td>Samarium</td>
<td>5.75 ± 0.56</td>
<td>5.58 ± 0.57</td>
<td>5.50 ± 0.29</td>
</tr>
<tr>
<td>Terbium</td>
<td>0.65 ± 0.12</td>
<td>0.63 ± 0.10</td>
<td>0.79 ± 0.03</td>
</tr>
<tr>
<td>Thumium</td>
<td><1 ± 0</td>
<td><1 ± 0</td>
<td>0.45 ± 0.01</td>
</tr>
<tr>
<td>Yttrium</td>
<td>23.73 ± 3.44</td>
<td>23.56 ± 3.98</td>
<td>25.41 ± 0.68</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>2.46 ± 0.55</td>
<td>2.55 ± 0.79</td>
<td>3.00 ± 0.09</td>
</tr>
</tbody>
</table>

Es ist ersichtlich, dass sich das Elementmuster der einzelnen Elemente der Bodenproben sehr gut in den Aschen der Kotproben aus den Kontroll- und Versuchsvarianten wieder findet. Dies ist als deutliches Zeichen dafür zu werten, dass die Konzentrationen im Kot nahezu ausschließlich aus der ausgenommenen Erde stammen und keine nennenswerte Kumulation oder Anreicherung stattfand.

Nimmt man die Hauptelemente aus der Gruppe der Seltenen Erden, lässt sich berechnen, dass der wesentliche Anteil (ca. 70%) der Kotmatrix aus den erdigen Verunreinigungen stammt. Unterstellt man eine Verdaußkeit der aufgenommenen Trockenmasse der vor der Entnahme der Kotproben aufgenommenen Futterproben von ca. 70%, lässt sich anhand der Cer- bzw. Lanthankonzentrationen in Kot und Bodenproben berechnen (Thornton & Abrahams, 1983), dass bei nicht unerheblicher Variation zwischen den Einzeltieren im Schnitt ca. 40% der aufgenommenen Trockenmasse den Erdepartikeln entstammten. Dies ist als eine außerordentlich hohe Menge einzuschätzen, die in dieser Größenordnung nicht erwartet wurden.

4.2.6 Mikrobielle Aktivität im Kot

Die mittleren ATP-Gehalte (nmol in g/kg TM) im Kot von Schweinen bei der Verfütterung verschiedener Futterkomponenten in den verschiedenen Mastdurchgängen und

Tabelle 4.12: Mittlere ATP-Gehalte im Kot von Schweinen bei der Verfütterung verschiedener Futterkomponenten in den verschiedenen Mastdurchgängen und -abschnitten

<table>
<thead>
<tr>
<th>Mastdurchgang</th>
<th>MD 1</th>
<th>MD 2</th>
<th>MD 3</th>
<th>MD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>Kw</td>
<td>Km</td>
<td>MSw</td>
<td>MSm</td>
</tr>
<tr>
<td>ATP Anfangsmast (nmol in g/kg TM)</td>
<td>Pb 1</td>
<td>28,5</td>
<td>67,8</td>
<td>36,0</td>
</tr>
<tr>
<td></td>
<td>Pb 2</td>
<td>± 27,6</td>
<td>± 39,2</td>
<td>± 18,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44,2</td>
<td>33,2</td>
<td>61,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 10,7</td>
<td>± 12,7</td>
<td>± 18,3</td>
</tr>
<tr>
<td>ATP Endmast (nmol in g/kg TM)</td>
<td>Pb 1</td>
<td>27,6</td>
<td>20,2</td>
<td>27,0</td>
</tr>
<tr>
<td></td>
<td>Pb 2</td>
<td>± 10,4</td>
<td>± 10,7</td>
<td>± 10,0</td>
</tr>
<tr>
<td>Mastdurchgang</td>
<td>MD 2</td>
<td>MD 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variante</td>
<td>Km/w</td>
<td>SRm/w</td>
<td>WGm/w</td>
<td>TKw</td>
</tr>
<tr>
<td>ATP Anfangsmast (nmol in g/kg TM)</td>
<td>Pb 1</td>
<td>71,8</td>
<td>95,1</td>
<td>105,0</td>
</tr>
<tr>
<td></td>
<td>Pb 2</td>
<td>± 22,7</td>
<td>± 31,6</td>
<td>± 22,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41,8</td>
<td>49,0</td>
<td>31,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 13,5</td>
<td>± 9,8</td>
<td>± 18,3</td>
</tr>
<tr>
<td>ATP Endmast (nmol in g/kg TM)</td>
<td>Pb 1</td>
<td>69,7</td>
<td>61,2</td>
<td>71,7</td>
</tr>
<tr>
<td></td>
<td>Pb 2</td>
<td>± 25,8</td>
<td>± 32,7</td>
<td>± 17,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58,5</td>
<td>36,0</td>
<td>21,6</td>
</tr>
</tbody>
</table>

4.3 Verdaulichkeitsbestimmungen *in vitro*

4.3.1 Analyse von Rohnährstoffen, Rohfaser und Stärke

Tabelle 4.13: Analyse von Rohnährstoffen, Rohfaser und Stärke der un- und vorbehandelten Substrate

<table>
<thead>
<tr>
<th>Futtermittel</th>
<th>TM</th>
<th>XA</th>
<th>XF</th>
<th>XP</th>
<th>XS</th>
<th>XZ</th>
<th>NDF</th>
<th>ADF</th>
<th>ADL</th>
<th>OM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maissilage</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>907</td>
<td>42</td>
<td>180</td>
<td>75</td>
<td>325</td>
<td>n.a.</td>
<td>362</td>
<td>220</td>
<td>82</td>
<td>958</td>
</tr>
<tr>
<td>VB</td>
<td>899</td>
<td>174</td>
<td>299</td>
<td>59</td>
<td>30</td>
<td>n.a.</td>
<td>579</td>
<td>370</td>
<td>84</td>
<td>826</td>
</tr>
<tr>
<td>Weidelgras</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>919</td>
<td>140</td>
<td>258</td>
<td>139</td>
<td>n.a.</td>
<td>85</td>
<td>565</td>
<td>340</td>
<td>40</td>
<td>860</td>
</tr>
<tr>
<td>VB</td>
<td>872</td>
<td>295</td>
<td>274</td>
<td>136</td>
<td>n.a.</td>
<td>73</td>
<td>557</td>
<td>336</td>
<td>10</td>
<td>705</td>
</tr>
<tr>
<td>Stoppelrübenkraut</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>924</td>
<td>236</td>
<td>201</td>
<td>285</td>
<td>14</td>
<td>29</td>
<td>204</td>
<td>352</td>
<td>24</td>
<td>764</td>
</tr>
<tr>
<td>VB</td>
<td>940</td>
<td>412</td>
<td>113</td>
<td>141</td>
<td>0</td>
<td>0</td>
<td>390</td>
<td>375</td>
<td>26</td>
<td>588</td>
</tr>
<tr>
<td>Stoppelrübenknolle</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>926</td>
<td>161</td>
<td>182</td>
<td>143</td>
<td>n.a.</td>
<td>283</td>
<td>189</td>
<td>184</td>
<td>52</td>
<td>839</td>
</tr>
<tr>
<td>VB</td>
<td>975</td>
<td>289</td>
<td>298</td>
<td>73</td>
<td>n.a.</td>
<td>194</td>
<td>189</td>
<td>54</td>
<td>711</td>
<td></td>
</tr>
<tr>
<td>Topinamburknolle</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>904</td>
<td>70</td>
<td>45</td>
<td>73</td>
<td>n.a.</td>
<td>606</td>
<td>73</td>
<td>51</td>
<td>22</td>
<td>930</td>
</tr>
<tr>
<td>VB</td>
<td>977</td>
<td>299</td>
<td>123</td>
<td>60</td>
<td>n.a.</td>
<td>0</td>
<td>126</td>
<td>52</td>
<td>23</td>
<td>701</td>
</tr>
<tr>
<td>Kleegrassilage 1</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>889</td>
<td>106</td>
<td>242</td>
<td>182</td>
<td>n.a.</td>
<td>89</td>
<td>408</td>
<td>245</td>
<td>46</td>
<td>894</td>
</tr>
<tr>
<td>VB</td>
<td>888</td>
<td>265</td>
<td>295</td>
<td>126</td>
<td>n.a.</td>
<td>34</td>
<td>502</td>
<td>279</td>
<td>130</td>
<td>736</td>
</tr>
<tr>
<td>Kleegrassilage 2</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>903</td>
<td>104</td>
<td>191</td>
<td>169</td>
<td>n.a.</td>
<td>185</td>
<td>336</td>
<td>176</td>
<td>54</td>
<td>896</td>
</tr>
<tr>
<td>VB</td>
<td>873</td>
<td>303</td>
<td>237</td>
<td>166</td>
<td>n.a.</td>
<td>70</td>
<td>387</td>
<td>222</td>
<td>152</td>
<td>697</td>
</tr>
</tbody>
</table>

1 n.a. = nicht analysiert

Zellwandbestandteile mehr umfassen als nur den Rohfasergehalt. Bemerkenswert ist, dass der NDF-Gehalt des unbehandelten Stoppelrüben-blattes mit 204 g/kg TM geringer ausfiel als der ADF-Gehalt mit 352 g/kg TM, während er beim vorbehandelten Stoppelrübenblatt mit 390 g/kg TM gegenüber 375 g/kg TM größer war.

4.3.2 Verlust an Organischer Masse

Tabelle 4.14 zeigt den Verlust an Organischer Masse, gemessen anhand verschiedener Methodiken: der Gesamttrakt-Verdaulichkeit, der modifizierten enzymatischen Vorbehandlung und nach der Gasproduktionsmethode mit un- und vorbehandelten Substraten unter Verwendung von zwei verschiedenen Inokula sowie nach der kombinierten Methode von Vorbehandlung und Gasproduktion. Trockenmasse- und Aschegehalte der Inokula betrugen für die Kontrollgruppe 18,8 bzw. 11,0 g/kg TM und 21,9 bzw. 13,8 g/kg TM für das Inokulum der Raufuttergruppe. Die Inokula für die Kontroll- bzw. Raufuttergruppe wiesen einen pH-Wert von 6,38 bzw. 6,40 auf.

Die Ergebnisse zeigen die Variation im Verlust an Organischer Masse in Abhängigkeit der verschiedenen Verfahren und Methoden. Die Methode nach Boisen & Fernandez (B&F; Tabelle 4.14) führte zu einem um 18,6% (Maissilage) bis 66,2% (Stoppelrübenkraut) höheren Masseverlust als die modifizierte Methode, die nur die precaecale Verdauung abbildet. Ergebnisse der in vitro-Fermentation (Table 4.14; GP) der unbehandelten Substrate zeigten einen um 6,5% (Weidelgras) bis 28,8% (Maissilage) höheren Verlust an Organischer Masse als die vorbehandelten Substrate. Der berechnete Masseverlust der kombinierten Methode von enzymatischer Vorbehandlung und Gasproduktion (Tabelle 4.14; B&F + GP) unterschied sich nicht vom Masseverlust der unbehandelten Substrate nach der Gasbildungsmethode. Allerdings waren die mittels der B&F-Methode ermittelten Masseverluste deutlich höher bei faserhaltigen Futtermitteln (z.B. bei Maissilage, Weidelgras und Kleegrassilage). Die Verluste an Organischer Masse waren bei der Gasbildungsmethode bei allen Substraten höher als bei der Methode nach Boisen & Fernandez (1997).

42
1) Verluste an Organischer Masse nach Boisen & Fernandez (1997):
Topinamburknolle > Stopperübenknolle > Stoppelrübenkraut > Kleegrassilage 2 > Kleegrassilage 1 > Maissilage > Weidelgras
2) Verluste an Organischer Masse nach in vitro-Fermentation bei unbehandeltem Substrat:
Topinamburknolle > Stopperübenknolle > Kleegrassilage 2 > Stoppelrübenkraut > Kleegrassilage 1 > Maissilage/Weidelgras
3) Verluste an Organischer Masse nach Vorbehandlung und in vitro-Fermentation:
Topinamburknolle > Stopperübenknolle > Kleegrassilage 2 > Stoppelrübenkraut > Kleegrassilage 1 > Maissilage > Weidelgras

Werden die Verlustraten an Organischer Masse während der Fermentation mit un- und vorbehandelten Substraten verglichen, erscheint eine Vorbehandlung der Proben nicht erforderlich. Allerdings müssen die Beobachtungen der vorliegenden Studie durch Wiederholungen bestätigt und eine größere Breite von Raufuttermitteln in unterschiedlicher Qualität in die Untersuchungen einbezogen werden, um beurteilen zu können, welches Futtermittel hinsichtlich der Nährstoffe am effizientesten von Schweinen genutzt werden kann.

Es muss offen bleiben, ob der nach der in vitro-Fermentation ermittelte Verlust an Organischer Masse die wahre Verdaulichkeit der Organischen Masse anzeigt, da nicht hinreichend geklärt ist, wie viel der Organischen Masse wirklich abgebaut und wie viel für die Erzeugung von mikrobieller Biomasse genutzt wurde (Blümmel et al., 1997).

4.3.3 Fermentationscharakteristika

Generell bestanden hochsignifikante Unterschiede zwischen den Fermentationsprozessen der verschiedenen Substrate (p < 0,005). Zwischen der Vorbehandlung und der NH₃ Bildung bestand eine hochsignifikante Interaktion für beide Inokula (p < 0,0001). Ferner konnte eine signifikante Interaktion zwischen der Vorbehandlung und dem Substrat für die übrigen Parameter während der Inkubation mit dem Raufutter-Inokulum ermittelt werden (p < 0,039). Die unbehandelten Substrate zeigten gegenüber den vorbehandelten Substraten eine höhere Gasbildung, außer für Stoppelrübensubstrat, das mit dem Raufutter-Inokulum inkubiert war (UB = 203 ml/g OM vs. VB = 236 ml/g OM). Die höchste Gasbildung wurde bei Topinambur mit 373 ml/g OM gemessen. Mit Ausnahme von Stoppelrübenblatt wiesen alle unbehandelten Substrate, inkubierte mit dem Kontroll-Inokulum eine höhere Produktion an flüchtigen Fettsäuren auf als die vorbehandelten Substrate. Die Inkubation mit dem Raufutter-Inokulum führte zu einer geringeren Bildung an flüchtigen Fettsäuren für unbehandeltes Stoppelrüben-
blatt und für beide Kleegrassilagen. Mit der Ausnahme von Stoppelrübenblatt zeigten alle vorbehandelten Substrate eine höhere NH₃ Produktion.

Tabelle 4.15: Mittlere Abbaurate und Fermentationscharakteristika von unbehandelten und vorbehandelten Substraten

<table>
<thead>
<tr>
<th>Material</th>
<th>Behandlung</th>
<th>Kontrollinoculum</th>
<th>Raufutterinoculum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>omcv¹</td>
<td>totFFS²</td>
<td>NH₃</td>
</tr>
<tr>
<td>Maissilage</td>
<td>UB</td>
<td>260</td>
<td>4.80</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>158</td>
<td>4.28</td>
</tr>
<tr>
<td>Weidelgras</td>
<td>UB</td>
<td>223</td>
<td>5.09</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>201</td>
<td>4.73</td>
</tr>
<tr>
<td>Stoppel-rübenkraut</td>
<td>UB</td>
<td>301</td>
<td>5.74</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>271</td>
<td>5.96</td>
</tr>
<tr>
<td>Stoppel-rübenknolle</td>
<td>UB</td>
<td>234</td>
<td>6.39</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>234</td>
<td>6.04</td>
</tr>
<tr>
<td>Topiman-burknolle</td>
<td>UB</td>
<td>373</td>
<td>7.17</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>315</td>
<td>6.54</td>
</tr>
<tr>
<td>Kleegras-silage 1</td>
<td>UB</td>
<td>241</td>
<td>5.32</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>226</td>
<td>5.12</td>
</tr>
<tr>
<td>Kleegras-silage 2</td>
<td>UB</td>
<td>302</td>
<td>5.95</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>265</td>
<td>5.95</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>6.07</td>
<td>0.29</td>
</tr>
<tr>
<td>Model est. (p-values)</td>
<td></td>
<td>0.462</td>
<td>0.109</td>
</tr>
<tr>
<td>Vorbehandlung</td>
<td></td>
<td>0.005</td>
<td><0.0001</td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td>0.990</td>
<td>0.788</td>
</tr>
<tr>
<td>V x M Interaktion</td>
<td></td>
<td>0.990</td>
<td>0.788</td>
</tr>
</tbody>
</table>

¹ omcv = totale Gas-Produktion der eingewogenen Organischen Masse
² FFS = Flüchtige Fettsäuren

beteiligt (Bauer et al., 2003). Dies kann ebenfalls nicht mit einer *in vitro* Methode simuliert werden. Der Einfluss von unterschiedlichen Inokula war in der eigenen Studie nicht so ausgeprägt wie in Untersuchungen von Jørgensen et al. (2007). Da die Bedingungen für die Mikrobiota im Gastrointestinaltrakt sehr komplex sind und ferner durch die Konzentration und Zusammensetzung der endogenen Nährstoffe beeinflusst werden, sind weitere Untersuchungen erforderlich (Williams et al., 2001; Williams et al., 2005).

4.3.4 Gasbildungskinetik

Die Ergebnisse der Gasbildung wurden unter Verwendung eines zwei-phasigen Modells (Groot et al., 1996) angepasst und sind in Tabelle 4.16 wiedergegeben. Für das Kontroll-Inokulum bestand eine hochsignifikante Beziehung (p < 0.0001) zwischen Vorbehandlung und Substrat für die maximale Gasbildungsrate (Rm). In Phase 2 zeigten alle Parameter eine hohe Interaktion zwischen Vorbehandlung und Substrat. Während der Inkubation mit dem Raufutter-Inokulum bestand eine hochsignifikante Interaktion zwischen Vorbehandlung und Substrat für alle Parameter in beiden Phasen.

Die Werte für die asymptotisch verlaufende Gasbildung unterschieden sich bei beiden Inokula nicht signifikant zwischen den unbehandelten und vorbehandelten Substraten. Eine Ausnahme stellte das unbehandelte Substrat der Maissilage dar, welches mit 54 mL/g OM eine sehr geringe Gasbildung während der Phase 1 und mit 241 ml/g OM eine um 350% höhere Gasbildung in der Phase 2 aufwies. Während der Inkubation mit dem Raufutter-Inokulum zeigten die UB- und VB-Substrate der Stoppelrübe ein gegenläufiges Ergebnis. Das unbehandelte Substrat produzierte 86 ml in Phase 1 und 224 ml in der zweiten Phase. Das VB-Substrat erzeugte 212 ml in Phase 1 und 181 ml in Phase 2. Für beide Inokula zeigten Stoppelrübenblatt, Stoppelrübe und Kleegrasilage 2 eine höhere Gasbildung in Phase 1. Die übrigen Substrate wiesen eine ähnliche (Kleegrasilage 1) oder eine höhere Gasbildung in Phase 2 im Vergleich zu Phase 1 auf.

Bei der asymptotischen Gasproduktion lassen sich keine signifikanten Unterschiede hinsichtlich Substrat oder Vorbehandlung erkennen, ebenso nicht bei der Halbzeit der ersten Phase. Beim Kontroll-Inokulum und auch beim Raufutter-Inokulum unterscheiden sich die Halbzeiten der zweiten Phase signifikant hinsichtlich des Substrates (p < 0,0001). Die Vorbehandlung spielt dagegen nur bei der Inkubation mit dem Kontroll-Inokulum eine signifikante Rolle (p < 0,0001). Hier haben die vorbehandelten Proben länger gebraucht, um die Halbzeit zu erreichen, außer beim Stoppelrübenblatt. Im Gegensatz dazu bestand bei der Halbzeit der zweiten Phase nur bei der Inkubation mit dem Raufutter-Inokulum eine signifikante Interaktion zwischen Substrat und Vorbehandlung.
Tabelle 4.16: Parameter der Gasbildung bei unbehandelten und mit dem Kontroll-Inokulum vorbehandelten Substraten

<table>
<thead>
<tr>
<th>Material</th>
<th>Behandlung</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A_i</td>
<td>$T_{1/2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ml/g OM</td>
<td>h</td>
</tr>
<tr>
<td>Kontroll-Inoculum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maissilage</td>
<td>UB</td>
<td>54</td>
<td>15,9</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>71</td>
<td>3,4</td>
</tr>
<tr>
<td>Weidelgras</td>
<td>UB</td>
<td>97</td>
<td>4,6</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>80</td>
<td>7,8</td>
</tr>
<tr>
<td>Stoppelrübenkraut</td>
<td>UB</td>
<td>154</td>
<td>8,6</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>103</td>
<td>6,9</td>
</tr>
<tr>
<td>Stoppelrübenknolle</td>
<td>UB</td>
<td>203</td>
<td>3,9</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>186</td>
<td>9,3</td>
</tr>
<tr>
<td>Topinanburknolle</td>
<td>UB</td>
<td>171</td>
<td>5,4</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>206</td>
<td>4,9</td>
</tr>
<tr>
<td>Kleegrassilage 1</td>
<td>UB</td>
<td>123</td>
<td>6,1</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>148</td>
<td>16,1</td>
</tr>
<tr>
<td>Kleegrassilage 2</td>
<td>UB</td>
<td>176</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>168</td>
<td>10,7</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>40</td>
<td>3,9</td>
</tr>
<tr>
<td>Model est. (p-values)</td>
<td></td>
<td>0,910</td>
<td>0,405</td>
</tr>
<tr>
<td>Vorbehandlung</td>
<td></td>
<td>0,052</td>
<td>0,753</td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td>0,936</td>
<td>0,254</td>
</tr>
<tr>
<td>V x M Interaktion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raufutter-Inoculum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maissilage</td>
<td>UB</td>
<td>101</td>
<td>5,9</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>103</td>
<td>5,4</td>
</tr>
<tr>
<td>Weidelgras</td>
<td>UB</td>
<td>145</td>
<td>25,7</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>125</td>
<td>8,3</td>
</tr>
<tr>
<td>Stoppelrübenkraut</td>
<td>UB</td>
<td>74</td>
<td>4,8</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>220</td>
<td>5,4</td>
</tr>
<tr>
<td>Stoppelrübenknolle</td>
<td>UB</td>
<td>86</td>
<td>4,7</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>212</td>
<td>6,7</td>
</tr>
<tr>
<td>Topinanburknolle</td>
<td>UB</td>
<td>233</td>
<td>6,1</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>126</td>
<td>7,2</td>
</tr>
<tr>
<td>Kleegrassilage 1</td>
<td>UB</td>
<td>198</td>
<td>29,3</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>184</td>
<td>4,9</td>
</tr>
<tr>
<td>Kleegrassilage 2</td>
<td>UB</td>
<td>148</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td>VB</td>
<td>86</td>
<td>4,7</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>26</td>
<td>4,4</td>
</tr>
<tr>
<td>Model est. (p-values)</td>
<td></td>
<td>0,356</td>
<td>0,018</td>
</tr>
<tr>
<td>Vorbehandlung</td>
<td></td>
<td>0,009</td>
<td>0,042</td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td>0,018</td>
<td>0,039</td>
</tr>
<tr>
<td>V x M Interaktion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A_i = asymptotische Gas-Produktion; $T_{1/2}$ = Halbzeit von C; R_m = Maximale Gasbildungsrate
Die maximale Fermentationsrate in Phase 1 unterschied sich signifikant für beide Inokula hinsichtlich des Substrates. Die Vorbehandlung dagegen spielte nur beim Kontroll-Inokulum eine Rolle. Eine Interaktion zwischen Substrat und Vorbehandlung ist bei Rm1 für beide Inokula gegeben. Bei Phase 2 ist die maximale Fermentationsrate sowohl hinsichtlich Substrat als auch Vorbehandlung gegeben. Außerdem findet bei beiden Inokula eine Interaktion zwischen Vorbehandlung und Substrat statt.

Ein Beispiel für die maximalen Unterschiede in den Gas-Kinetiken ist die Topinambur-Knolle hinsichtlich der maximalen Fermentationsrate bei Phase 2. Die unbehandelte Knolle hat eine sehr hohe maximale Gasproduktionsrate (71 ml/h bei KI; 67 ml/h RI), während die vorbehandelte Knolle nur 8,4 bzw. 7,9 ml/h produziert.

Die Abbauraten waren für die vorbehandelten Substrate geringer als für die unbehandelten Substrate, ausgenommen für Maisilage und Topinambur in Phase 1 und Stoppelrübenblatt für Phase 2. Dies kann auf den möglichen Verlust auf leicht abbaubare Komponenten während der Vorbehandlung zurückgeführt werden. Bauer et al. (2003) vermuten, dass die verbliebene Substanz einen erhöhten Anteil langsam abbaubarer Komponenten enthält.

Die erste Phase zeigt die Gasbildung von löslichen und daher leicht abbaubaren Komponenten. Die unlöslichen Anteile erfordern die Kolonisation mit Mikroben und Einfeuchtung bevor die Abbauprozesse beginnen. Dies findet in der zweiten Phase statt (Groot et al., 1996). Es kann geschlossfolgert werden, dass schnell abbaubare Futterbestandteile im oberen GIT fermentiert werden, während langsam abbaubare Substanzen im unteren Darmtrakt abgebaut werden. Die Messung der kumulativen Gasbildung und die dabei gewonnenen Ergebnisse können deshalb als Hinweis darauf genommen werden, wo die Produkte wahrscheinlich im GIT abgebaut werden (Williams et al., 2005).

Zusammenfassend wird geschlossfolgert, dass die enzymatische Inkubation eine geeignete Methode darstellt, um eine Rangierung von Futtermitteln hinsichtlich ihrer Verdaulichkeit vorzunehmen. Um die Effekte der Vorbehandlung auf die Fermentationsmuster beurteilen zu können, müssen weitere Substrate mit mehr Wiederholungen geprüft werden. Der Einfluss von unterschiedlichen Inokula war in der eigenen Studie nicht eindeutig und bedarf weiterer Prüfungen. Ferner sollte in weitergehenden Untersuchungen geklärt werden, welche Methode die höchste Korrelation zu in vivo Werten aufweist. In der vorliegenden Studie konnten nur sieben verschiedene Futtermittel mit einer Wiederholung einbezogen werden. Die gewonnen Daten sollten mit weiteren Wiederholungen und einer Ausweitung der Futtermittel bestätigt
werden. Die Ergebnisse können folglich nur erste Anhaltspunkte zur Bewertung von Raufuttermitteln in der Schweinefütterung darstellen.

4.4 Bestimmung der Futteraufnahme von Raufutter unter Freilandbedingungen

Bei Bilanzversuchen im Stall ist die verabreichte Futtermenge in der Regel bekannt. Daher kann hier über die Erfassung der Kotmenge mit Hilfe eines nicht im Verdauungstrakt abbaubaren Markers die Verdaulichkeit der Futterration bestimmt werden. Um unter Freilandbedingungen die Menge an aufgenommenen Futtermitteln zu bestimmen, ist zusätzlich ein interner Marker im Futtermittel und die Bestimmung der Verdaulichkeit der eingesetzten Futtermittel durch *in vivo* oder *in vitro* Methoden erforderlich.

durch die Installation von mobilen Fressständen sichergestellt, in denen die Tiere während der Fütterungszeit kurzzeitig fixiert wurden. Auf diese Weise konnten die Tiere ungestört von den Nachbartieren die restriktiv zugeteilte Kraftfuttermenge aufnehmen.

Die in Kapitel 4.2.4 und 4.2.5 dargestellten Ergebnisse haben gezeigt, dass die Schweine im Freiland erhebliche Mengen an Erdmineralien aufgenommen haben und das Titan selbst im Boden vorhanden ist. Dies hat einerseits zu erheblichen analytischen Schwierigkeiten bei der Bestimmung der Markersubstanz im Kot geführt.

Entgegen den ursprünglichen Annahmen ist Titandioxid als Markersubstanz unter Freilandbedingungen nicht geeignet. Die hohen Aufnahmemengen von Erdmineralien durch Schweine im Freiland sowie die analytischen Schwierigkeiten waren in diesem Umfang bei der Planung des Vorhabens nicht absehbar. Weder für die Erdaufnahme noch für die analytischen Schwierigkeiten lagen entsprechende Hinweise in der Literatur vor.

4.5 Voraussichtlicher Nutzen und Verwertbarkeit der Ergebnisse

Entgegen vorheriger Annahmen zeigen die vorliegenden Ergebnisse, dass Titandioxid als Marker zur Bestimmung der Aufnahmemengen von Raufutter im Freiland nicht geeignet ist. Insbesondere stehen die hohen Mengen von Erdmineralien, die von Schweinen in der Freilandhaltung aufgenommen werden, diesem methodischen Ansatz entgegen. Dadurch

Zusammenfassung

Die Lebendmasseentwicklung wies in allen Mastdurchgängen eine hohe Variation sowohl zwischen als auch innerhalb der Fütterungsvarianten auf. Insbesondere führten die in der kalten Jahreszeit durchgeführten Mastdurchgänge zu deutlichen Einbußen bei den Tageszunahmen, da der erhöhte Energiebedarf versuchsbedingt nicht durch eine erhöhte Energieversorgung ausgeglichen wurde. Zwischen männlichen und weiblichen Tieren konnten keine Unterschiede hinsichtlich der Tageszunahmen festgestellt werden.

In den Mastdurchgängen MD 2 und 4 zeigten die eingesetzten Raufuttermittel die folgende Reihenfolge hinsichtlich ihres Beitrages zur Lebendmasseentwicklung:

MD 2: Anfangsmast: Topinambur-Knolle > Stoppelrübe > Weidelgras
Endmast: Topinambur-Knolle > Kleegrasilage
MD 4: Anfangsmast: Stoppelrübe > Topinambur-Grün > Weidelgras
Endmast: Topinambur-Knolle > Kleegrasilage

Die Analyse der Kotproben zeigte große Schwankungen bezüglich des Trockenmasse- und des Rohaschegehaltes zwischen und innerhalb der Fütterungsvarianten. Der Rohaschegehalt befand sich mit einem über alle Fütterungsvarianten gemittelten Wert von 41,2% ± 5,1% auf einem sehr hohen Niveau. Der hohe Rohaschegehalt liegt auf hohe Aufnahmemenge von...
Erdmineralien schließen. Zwischen den Fütterungsvarianten bestanden keine signifikanten Unterschiede im Rohaschegehalt.

Auch die Kotbeschaffenheit wies hinsichtlich des pH-Wertes und der mikrobiellen Aktivität große Schwankungen zwischen und innerhalb der Fütterungsvarianten auf, aus der keine gerichtete Beeinflussung durch die Fütterungsversuchsvarianten abgeleitet werden konnte.

Die Gehalte der Markersubstanz Titandioxid im Kot schwankten beträchtlich zwischen den Tieren. Bei den parallel durchgeführten Analysen mittels Kjeldahl- und Druckaufschluss wurden durchweg höhere Analysewerte nach Druckaufschluss ermittelt. Letztere erreichten im Mittel ein Niveau, das ca. 72% der Vergleichswerte mittels Kjeldahl-Aufschluss entsprach.

Zwischen den mittels Kjeldahl-Aufschluss und Druckaufschluss ermittelten Werten bestand zwar eine signifikante (p < 0,05), mit r = 0,12 jedoch nur schwache Beziehung. Während die mittels Druckaufschluss bestimmten Titangehalte mit r = 0,46 hochsignifikant positiv mit den jeweiligen Asche-Gehalten der Kotproben korrelierten (p < 0,01), bestand mit r = -0,24 eine signifikant negative Korrelation zwischen den Titangehalte nach Kjeldahl-Aufschluss und dem Aschegehalt der Kotproben (p < 0,01).

Die Titangehalte in den Bodenproben wiesen einen mittleren Gehalt von 5,01 ± 0,30 g/kg in der aus den Bodenproben gewonnenen Asche auf. Dabei unterschieden sich die Gehalte von den Versuchsflächen nicht signifikant von den Bodengehalten benachbarter, von Schweinen nicht genutzter Flächen.

Um die scheinbare Verdaulichkeit von Raufuttermitteln bei Mastschweinen besser abschätzen zu können bzw. ein Ranking zwischen unterschiedlichen Raufuttermitteln vornehmen zu können, wurden sieben Komponenten (Maissilage, Weiderlgras, Stoppelrübe und

6 Gegenüberstellung der ursprünglichen geplanten zu den tatsächlich erreichten Zielen; Hinweise auf weiterführende Fragestellungen

nicht eindeutig und bedarf weiterer Prüfungen. Ferner sollte in weitergehenden Untersuchungen geklärt werden, welche Methode die höchste Korrelation zu \textit{in vivo} Werten aufweist.

7 Übersicht über alle im Berichtszeitraum vom Projektnehmer realisierten Veröffentlichungen zum Projekt

Bisherige Veröffentlichungen in wissenschaftsorientierten Zeitschriften:

Bisherige Veröffentlichungen in praxisorientierten Zeitschriften sowie Vorträge:

Weitere Veröffentlichungen zur Freilandhaltung sind in Bearbeitung bzw. geplant.

Zurückliegende Veröffentlichungen zum Thema Freilandhaltung von Schweinen:

8 Literaturverzeichnis

Danielsen, V., Hansen, L.L., Møller, F., Bejrholm, C., Nielsen, S. (1999): Production results and sensory meat quality of pigs fed different amounts of concentrate and ad lib. clover grass or clover

Anhang

Tabelle A1: Mittlere Lebendmasseentwicklung im gesamten Mastverlauf im 1. und 3. Mastdurchgang

<table>
<thead>
<tr>
<th>Variante</th>
<th>MD 1</th>
<th>MD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftriebsgew.</td>
<td>K_w</td>
<td>K_m</td>
</tr>
<tr>
<td>(kg)</td>
<td>30,9</td>
<td>29,7</td>
</tr>
<tr>
<td>± 4,1</td>
<td>± 5,0</td>
<td>± 4,2</td>
</tr>
<tr>
<td>Umtriebsgew.</td>
<td>66,2</td>
<td>65,7</td>
</tr>
<tr>
<td>(kg)</td>
<td>± 6,4</td>
<td>± 7,1</td>
</tr>
<tr>
<td>Gew. Mastende</td>
<td>121</td>
<td>123</td>
</tr>
<tr>
<td>(kg)</td>
<td>± 5</td>
<td>± 4</td>
</tr>
<tr>
<td>Mastdauer</td>
<td>137</td>
<td>143</td>
</tr>
<tr>
<td>(d)</td>
<td>± 10</td>
<td>± 12</td>
</tr>
</tbody>
</table>

Tabelle A2: Mittlere Lebendmasseentwicklung im gesamten Mastverlauf im 2. und 4. Mastdurchgang

<table>
<thead>
<tr>
<th>Variante</th>
<th>MD 2</th>
<th>MD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftriebsgew.</td>
<td>K_m/w</td>
<td>SR/K_m/w</td>
</tr>
<tr>
<td>(kg)</td>
<td>27,9</td>
<td>28,1</td>
</tr>
<tr>
<td>± 2,9</td>
<td>± 2,5</td>
<td>± 2,4</td>
</tr>
<tr>
<td>Umtriebsgew.</td>
<td>64,7</td>
<td>65,1</td>
</tr>
<tr>
<td>(kg)</td>
<td>± 6,1</td>
<td>± 6,7</td>
</tr>
<tr>
<td>Gew. Mastende</td>
<td>119</td>
<td>125</td>
</tr>
<tr>
<td>(kg)</td>
<td>± 5</td>
<td>± 9</td>
</tr>
<tr>
<td>Mastdauer</td>
<td>178</td>
<td>196</td>
</tr>
<tr>
<td>(d)</td>
<td>± 16</td>
<td>± 18</td>
</tr>
</tbody>
</table>

Tabelle A 3: Mastdurchgang, Anzahl der Schlachttermine, Zeitraum der Schlachttermine pro Mastdurchgang, Tierzahl und Probename

<table>
<thead>
<tr>
<th>MD</th>
<th>Anzahl ST</th>
<th>Zeitraum</th>
<th>Tiere gesamt</th>
<th>Probenahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1.9. – 19.10.2006</td>
<td>78</td>
<td>- Kotelett</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1.3. – 4.5.2007</td>
<td>92</td>
<td>- Kotelett/Blut</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>26.7. - 6.9.2007</td>
<td>77</td>
<td>- Blut</td>
</tr>
</tbody>
</table>

ST = Schlachttermine
Tabelle A 4: Mittlere Handelsklasseneinstufungen der Mastdurchgänge 1 und 3

<table>
<thead>
<tr>
<th>Variante</th>
<th>MD 1</th>
<th>MD 2</th>
<th>MD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kw</td>
<td>Km</td>
<td>MS/</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
<td>WGw</td>
</tr>
<tr>
<td>HKL E</td>
<td>95,0</td>
<td>65,0</td>
<td>100,0</td>
</tr>
<tr>
<td>(MfA > 55%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>19</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>HKL U</td>
<td>5,0</td>
<td>35,0</td>
<td>-</td>
</tr>
<tr>
<td>(MfA 50 - 55%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>1</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>HKL R</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MfA 45- 50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Kw = Kontroll-Variante weiblich, Km = Kontroll-Variante männlich, Rw = Raufutter-Variante weiblich > Maisilage Anfangsmast/Weidelgras Endmast, Rm = Raufutter männlich > Maisilage Anfangsmast/Weidelgras Endmast

Tabelle A 5: Mittlere Handelsklasseneinstufungen der Mastdurchgänge 2 und 4

<table>
<thead>
<tr>
<th>Variante</th>
<th>MD 2</th>
<th>MD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kw</td>
<td>Km</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>HKL E</td>
<td>80,0</td>
<td>16</td>
</tr>
<tr>
<td>(MfA > 55%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>HKL U</td>
<td>20,0</td>
<td>14</td>
</tr>
<tr>
<td>(MfA 50 - 55%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>HKL R</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(MfA 45- 50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 alle männlich
2 4 männlich, 2 weiblich

Tabelle A 6: Organbefunde bei der Schlachtung der verschiedenen Mastdurchgänge

<table>
<thead>
<tr>
<th>Befundart</th>
<th>MD 1 mit Befund</th>
<th>MD 2 mit Befund</th>
<th>MD 3 mit Befund</th>
<th>MD 4 mit Befund</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>Leberparasiten</td>
<td>13</td>
<td>36</td>
<td>32</td>
<td>23</td>
</tr>
<tr>
<td>Leber verw</td>
<td>8</td>
<td>27</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Leber ausg</td>
<td>8</td>
<td>16</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Leberentzündung</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Darm Parasiten</td>
<td>5</td>
<td>32</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Herzbeutelent</td>
<td>3</td>
<td>17</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>Lunge ggr</td>
<td>25</td>
<td>53</td>
<td>44</td>
<td>53</td>
</tr>
<tr>
<td>Lunge mgr</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Lunge hgr</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Brustfellentzündung ggr</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Brustfellentzündung mgr</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Brustfellentzündung hgr</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bauchfellentzündung ggr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bauchfellentzündung mgr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bauchfellentzündung hgr</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hautschäden</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Abszesse</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Nierenveränderung</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Mastdurchgang</td>
<td>MD 1</td>
<td>MD 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variante</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti Druckaufschluss (mg/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kw</td>
<td>3467</td>
<td>3993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Km</td>
<td>3638</td>
<td>3782</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS<sub>w</sub></td>
<td>3067</td>
<td>3238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS<sub>m</sub></td>
<td>3397</td>
<td>3212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 365</td>
<td>± 389</td>
<td>± 444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 432</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variante</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti Kjeldahl aufschluss (mg/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kw</td>
<td>2891</td>
<td>2701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Km</td>
<td>2784</td>
<td>3035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG<sub>w</sub></td>
<td>2312</td>
<td>2698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG<sub>m</sub></td>
<td>2084</td>
<td>2582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 379</td>
<td>± 674</td>
<td>± 523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 419</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastdurchgang</td>
<td>MD 2</td>
<td>MD 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variante</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti Druckaufschluss (mg/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Km<sub>m/w</sub></td>
<td>3392</td>
<td>3676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S<sub>r</sub><sub>m/w</sub></td>
<td>3392</td>
<td>3318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG<sub>m/w</sub></td>
<td>3167</td>
<td>3232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK<sub>w</sub></td>
<td>3178</td>
<td>3280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK<sub>m</sub></td>
<td>3097</td>
<td>3095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 419</td>
<td>± 324</td>
<td>± 447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 412</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variante</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti Kjeldahl aufschluss (mg/kg TM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Km<sub>m/w</sub></td>
<td>2111</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K<sub>s</sub><sub>m/w</sub></td>
<td>2257</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS<sub>m/w</sub></td>
<td>2067</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK<sub>w</sub></td>
<td>2067</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK<sub>m</sub></td>
<td>2147</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 580</td>
<td>± 890</td>
<td>± 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>± 301</td>
<td>± 316</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>