Neue Anbaustrategien zur Erhöhung der N-Effizienz und zur Reduzierung des Unkrautdruckes im ökologischen Landbau

FKZ: 03OE180

Projektleiter:
Leibniz-Zentrum für Agrarlandschafts- und Landnutzungsforschung e.V.
Institut für Landnutzungssysteme
Eberswalder Straße 84, 15374 Müncheberg
Tel.: +49 33432 82-310
Fax: +49 33432 82-387
E-Mail: jbachinger@zalf.de
Internet: http://www.zalf.de

Autoren:
Bachinger, Johann; Fischer, Holger; Stange, Gerlinde

Gefördert vom Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz im Rahmen des Bundesprogramms Ökologischer Landbau (BÖL)

Abschlussbericht

zur Zuwendung aus dem Bundeshaushalt, Einzelplan 10 des Bundesministeriums für Ernährung, Landwirtschaft u. Verbraucherschutz (BMELV), Kapitel 1002 Titel 686 19;

im Rahmen der Richtlinie zur Durchführung des „Programms des BMELV zur Förderung von Forschungs- und Entwicklungsvorhaben sowie von Maßnahmen zum Technologie- und Wissenstransfer im ökologischen Landbau“

zum Thema

Neue Anbaustrategien zur Erhöhung der N-Effizienz und zur Reduzierung des Unkrautdruckes im ökologischen Landbau

auf Basis der Ausschreibung der Bundesanstalt für Landwirtschaft und Ernährung, Geschäftsstelle Bundesprogramm Ökologischer Landbau

Projektpartner:
Leibniz-Zentrum für Agrarlandschaftsforschung ZALF e.V.
Institut für Landnutzungssysteme
(Projectleitung)
Eberswalder Str. 84, 15374 Müncheberg

Bioland Erzeugerring Bayern e. V.
Auf dem Kreuz 58, 86152 Augsburg

Gut Wilmersdorf GbR
Hauptstraße 23, 16278 Wilmersdorf

Verfasst von:
Dr. Johann Bachinger
Holger Fischer
Gerlinde Stange
Leibniz-Zentrum für Agrarlandschaftsforschung ZALF e.V.
Institut für Landnutzungssysteme

Müncheberg, den 26.10.2007
3.1.3.5 Entwicklung der Winterroggen-Bestände bis zur Ernte...................................... 41
3.1.3.6 Diskussion der Nachwinter-Entwicklung der Bestände 44
3.1.3.7 Ertrags- und Qualitätsparameter bei Triticale ... 45
3.1.3.8 Ertrags- und Qualitätsparameter bei Winterroggen ... 46
3.1.3.9 Diskussion der Ertragsparameter ... 47
3.2 Anbauverfahren 2: Winterraps mit abfrierenden legumen Beisaaten 49
3.2.1 Exaktversuche Müncheberg .. 49
3.2.1.1 Biomasseentwicklung von Beisaat, Ackerbegleitflora und Hauptfrucht 49
3.2.1.2 Einfluss der Beisaaten auf die Nmin-Gehalte der Böden 53
3.2.2 Praxisversuche ... 55
3.2.2.1 Biomasseentwicklung von Beisaat, Ackerbegleitflora und Hauptfrucht 55
3.2.2.2 Einfluss der Beisaaten auf den Ertrag der Hauptkultur Winterraps 63
3.3 Anbauverfahren 3: Körnerleguminosen mit Gras- und Kleegrasuntersäaten 65
3.3.1 Untersaatversuche Erbse (Exaktversuche) ... 66
3.3.1.1 Biomasseentwicklung von Untersaat-, Ackerbegleitflora und Hauptfrucht 66
3.3.1.2 Einfluss der Untersaat auf den Ertrag der Hauptkultur Erbse 71
3.3.1.3 Einfluss der Untersaat auf die Nmin-Gehalte der Böden nach Erbsenernte 72
3.3.1.4 Einfluss der Untersaat auf den Ertrag der Nachfrucht Hafer 75
3.3.2 Untersaatversuche Lupine (Exakt- und Praxisversuche) .. 76
3.3.2.1 Biomasseentwicklung von Hauptfrucht, Untersaat- und Ackerbegleitflora 77
3.3.2.2 Biomasseentwicklung von Hauptfrucht, Untersaat- und Ackerbegleitflora 82
3.3.2.3 Einfluss der Untersaat auf die Nmin-Gehalte der Böden nach Lupinenernte .. 83
3.3.2.4 Einfluss der Untersaat auf den Ertrag der Folgekultur Hafer 85

4. Zusammenfassende Bewertungen und Anbauempfehlungen..................................... 87
4.1 Anbauverfahren 1: Wintergetreide mit abfrierenden Körnerleguminosen als
Beisaaten ... 87
4.1.1 Pflanzenbauliche Bewertung .. 87
4.1.2 Ökologische Bewertung ... 88
4.1.3 Ökonomische Bewertung ... 89
4.2 Anbauverfahren 2: Winterraps mit abfrierenden legumen Beisaaten 89
4.2.1 Pflanzenbauliche Bewertung .. 89
4.2.2 Ökologische Bewertung ... 90
4.2.3 Ökonomische Bewertung ... 90
4.3 Anbauverfahren 3: Körnerleguminosen mit Gras- und Kleegrasuntersäaten 91
4.3.1 Pflanzenbauliche Bewertung .. 91
4.3.2 Ökologische Bewertung ... 92
4.3.3 Ökonomische Bewertung ... 92

5. Zusammenfassung .. 93
6. Abstract ... 95
7. Literaturverzeichnis .. 97
ABBILDUNGSVERZEICHNIS

Abb. 1: Lage der Versuchsbetriebe in Deutschland, Topographische Karte Mitteleuropa............. 5
Abb. 2: Karte der naturräumlichen Haupteinheiten... 8
Abb. 3: Monatswerte von Niederschlag und Durchschnittstemperaturen der Station Müncheberg 10
Abb. 4: Monatswerte von Niederschlag und Durchschnittstemperaturen der Station Angermünde 10
Abb. 5: Monatswerte von Niederschlag und Durchschnittstemperaturen der Station Braundersgrün 10
Abb. 6: Monatswerte von Niederschlag und Durchschnittstemperaturen der Station Gablingen.... 11
Abb. 7: Monatswerte von Niederschlag und Durchschnittstemperaturen der Station Helmstadt 11
Abb. 8: Versuchsplan der Praxisversuche im Anbauverfahren 1.. 12
Abb. 9: Väderstad Rapid 300 C mit geteilter Saatguttank.. 15
Abb. 10: N-Mengen im Aufwuchs von Triticale und Beisaat sowie N_{min} von 0-60cm Anfang November 2004, Versuchsstandort Müncheberg .. 30
Abb. 11: N-Mengen im Aufwuchs von Triticale und Beisaat sowie N_{min} von 0-90cm Anfang November 2005, Versuchsstandort Müncheberg .. 30
Abb. 12: N-Mengen im Aufwuchs von Winterroggen und Beisaat sowie N_{min} von 0-60 cm Anfang November 2004, Versuchsstandort Müncheberg .. 33
Abb. 13: N-Mengen im Aufwuchs von Winterroggen und Beisaat sowie N_{min} von 0-90cm Anfang November 2005, Versuchsstandort Müncheberg .. 34
Abb. 15: Wachstumswirksame Temperatursumme und Niederschlagssumme im Herbst 2004 von der Frühsaat bis zur Probennahme im November. Werte der Wetterstation auf den Versuchsflächen in Müncheberg .. 36
Abb. 16: Spät- und Frühsaatvariante Winterroggen, 07. Okt. 2005, Versuchsstandort Müncheberg ... 37
Abb. 18: Deckungsgrad (DG) von Triticale, Beisaat und Unkraut vom 6.4.06 bis zum 27.06.06, getrennt nach der Beisaat. Versuchsstandort Müncheberg ... 40
Abb. 19: N_{min}-Mengen im Boden unter Triticale am 07.04.06, Versuchsstandort Müncheberg..... 41
Abb. 21: Deckungsgrad (DG) von Winterroggen, Beisaat und Unkraut 6.04. bis 23.05.06, Versuchsstandort Müncheberg ... 42
Abb. 22: N_{min}-Mengen im Boden unter Winterroggen am 07.04.06, Versuchsst. Müncheberg..... 44
Abb. 23: Bestandesentwicklung von Winterraps mit Beisaatvariante Erbse, starke Verunkrautung, 7.10.2004 Müncheberg.. 50
Abb. 24: Herbstentwicklung der Deckungsgrade und Bestandeshöhen von Winterraps, Beisaat, und Unkraut Rapsversuch in Müncheberg, 2004/05, ... 51
Abb. 25: Stickstoff in der Biomasse des oberirdischen Aufwuchs von Winterraps und Leguminosen, am 6.10.05, unterschieden nach Art der Beisaat, Müncheberg, 2005/06........... 52
Abb. 26: Deckungsgrade von Kultur, Beisaat und Unkraut, Rapsversuch Müncheberg 2005/06 vom 18.11.05, getrennt nach Art der Beisaat ... 52
Abb. 27: N_{min}-Mengen im Boden unter Raps am 06.10.04 und am 04.11.04 unterschieden nach Beisaat, Versuchsstandort Müncheberg .. 54
Abb. 29: Winterraps-Beisaatenversuch Wilmersdorf, 26.10.04... 55
Abb. 30: Deckungsgrade von Winterraps, Beisaat und Unkraut im Herbst, Wilmersdorf, 2004/05 und 2005/06... 56
Abb. 31: Bestandeshöhen von Winterraps, Beisaat und Unkraut im Herbst, Wilmersdorf, 2004/05 und 2005/06... 56
Abb. 32: Winterraps-Beisaatenversuch Wilmersdorf, Beisaatvariante Erbse, 24.10.05........... 58
Abb. 33: Rapsschlag mit abgefrorenen Beisaaten, Aufnahme vom 07.01.2005, Versuchsstandort Wilmersdorf... 59
Abb. 34: Rapsversuch in Wilmersdorf, 2004/05, Frühjahrsentwicklung der Deckungsgrade und Bestandeshöhen von Hauptfrucht, Beisaat, und Unkraut.. 60
Abb. 35: Aufwuchs [dt TM ha$^{-1}$] von Raps, Unkraut und Leguminosenstroh zum Zeitpunkt der Rapsblüte am 19.05.05, Standort Wilmersdorf ... 61
Abb. 36: Winterraps Erntejahr 2005, Standort Gut Wilmersdorf, getrennt nach Beisaat 61
Abb. 37: Winterraps am 11.04.2006, Parzelle mit Erbsen-Beisaat, Versuchsst. Wilmersdorf, ... 62
Abb. 38: Deckungsgrade (DG) von Winterraps und Unkraut zu fünf Boniturzeitpunkten, Erntejahr 2006, getrennt nach Beisaat, Versuchsstandort Wilmersdorf.......................... 62
Abb. 39: Ertragskarte aus den beim Drusch erhobenen, DGPS-referenzierten Ertragsdaten, Erntejahr 2005, Standort Wilmersdorf (Längsparzellen 250 m)......................... 63
Abb. 40: N_{min}-Mengen im Boden zu drei Terminen, Rapsversuch 2004/05, Wilmersdorf........ 64
Abb. 44: Aufwuchs von Untersaat und Unkraut zum Zeitpunkt der Ernte, Exaktversuche Erbsen mit Untersaat 2004 bis 2006 ... 69
Abb. 47: Kornerträge der Erbse der Versuchszeiten 2004 bis 2006, der Untersaatvarianten 72
Abb. 48: N_{min}-Mengen im Boden an zwei Terminen 2004, u .. 74
Abb. 49: N_{min}-Mengen im Boden am 30.11.2006 nach Erbsen mit Untersaatvarianten und Winterrübsen als Stoppelsaat ... 74
Abb. 50: Hafererträge nach Saatvarianten der Vorjahres-Erbsenversuche 75
Abb. 51: Fraßspuren von *Sitona spec.* an *Lupinus angustifolius* im Exaktversuch (7. Mai 2004, Standort Müncheberg) ... 76
Abb. 52: Deckungsgrad (DG) und mittlere Höhe von Lupine, Untersaat und Unkraut, getrennt nach Art der Untersaat 2004, Standort Müncheberg .. 78
Abb. 53: Aufwuchs von Lupine, Untersaat und Unkraut zum Zeitpunkt der Blüte der Hauptfrucht (Versuchsjahre 2004 bis 2006, Standort Müncheberg) .. 78
Abb. 54: Oberirdische Biomasse von Lupinen und Unkraut, Beginn bis Mitte Blüte Lupine, 2005 und 2006, Wilmersdorf ... 80
Abb. 55: Stickstoffmengen im Aufwuchses, Ernteschnitt vom 24.08.05 und Herbstschnitt vom 19.10.05, Lupinenversuch Standort Wilmersdorf .. 81
Abb. 56: Rübsen, Ausfalllupinen und Reste der Untersaat in Wilmersdorf, 19.10.05 82
Abb. 57: Lupinen-Korntragen der Handernten vom 03.08.05 und 25.07.06 nach Faktorstufe Untersaat, gemittelt über beide Versuchsjahre, Standort Wilmersdorf 83
Abb. 58: N_{min}-Mengen im Boden nach der Lupineernte 2004, der Fakturstufen Untersaat, Standort Müncheberg .. 84
Abb. 59: N_{min}-Mengen im Boden 0-60 cm nach der Lupinenenernte und Mitte Oktober 2005, getrennt nach der Faktorstufe Untersaat, Standort Wilmersdorf 85
Abb. 60: Erträge der Folgefrucht Hafer nach Saatvarianten der Lupinenversuche 86
TABELLENVERZEICHNIS

Tab. 1: Bodenarten und Bodenbewertung der einzelnen Projektbetriebe ... 7
Tab. 2: Einordnung der Versuchsbetriebe in die Klimatische Gliederung der Bundesrepublik Deutschland ... 8
Tab. 3: Einordnung der Versuchsbetriebe in Naturräume .. 8
Tab. 4: Mittelwerte von Temperatur und Niederschlag im Versuchszeitraum und im langjährigen Mittel ... 9
Tab. 5: Praxisversuche Wintergetreide mit legume Beisaaten .. 13
Tab. 6: Kulturdaten für die Aussaat der Wintergetreide-Exaktversuche .. 14
Tab. 7: Kulturdaten für die Aussaat des Winterraps-Exaktversuchs im Jahr 2004 .. 16
Tab. 8: Kulturdaten für die Aussaat des Winterraps-Exaktversuchs im Jahr 2005 .. 16
Tab. 9: Versuchsvarianten im Exaktversuch zum Anbauverfahren 2 .. 18
Tab. 10: Ernteparameter Winterweizen 2005, getrennt nach früher und später (betriebsüblicher Aussaat, Betrieb 8) ... 21
Tab. 11: Erträge, Rohproteingehalte und TKM-Werte von Winterweizen bei verschiedenen Saatvarianten der Praxisversuche Bayern 2005 und 2006 ... 23
Tab. 12: Aufwuchsbonitur *) der legumen Beisaaten in Winterweizen der Versuche 2005 und 2006 von Betrieb 6, 8 u. 10 .. 23
Tab. 15: Aufwuchsbonitur der legumen Beisaaten, Winterrapen/Triticale, Praxisversuche Brandenburg 2005-2006 .. 26
Tab. 16: Erträge, Rohproteingehalte und TKM-Werte von Winterrapen bei verschiedenen Beisaatvarianten, Praxisversuche Bayern 2005 .. 26
Tab. 17: Winterrapen Praxisversuche Bayern 2006: Erträge, Rohproteingehalte und TKM-Werte der verschiedenen Beisaatvarianten .. 27
Tab. 18: Winterroggen Praxisversuche Bayern 2005 und 2006, Aufwuchsbonitur der legumen Beisaaten ... 27
Tab. 21: N_{min}: Mengen im Boden 0-90cm, Mittelwerte der Parzellen mit spät gesäter Triticale Herbst 2004 und 2005, Versuchsstandort Müncheberg ... 31
Tab. 22: Deckungsgrade von Winterroggen, Beisaat und Unkräutern zu Beginn der Winterruhe in den Jahren 2004 und 2005, Versuchsstandort Müncheberg ... 32
Tab. 23: Aufwuchs von Winterroggen und Beisaat zu Beginn der Winterruhe in den Jahren 2004 und 2005, Versuchsstandort Müncheberg ... 32
Tab. 24: N_{min}-Mengen im Boden in Schichten von 30cm, Mittelwerte der Parzellen mit spät gesätem Winterroggen Herbst 2004 und 2005, Versuchsstandort Müncheberg 34
Tab. 27: Korn- und Stroherträge Triticale 2005 u. 2006 getrennt nach Beisaatvarianten. Versuchsstandort Müncheberg... 46
Tab. 28: Triticale, Rohprotein-Gehalte im Korn und TKM getrennt nach Beisaatvariante, Versuchsstandort Müncheberg .. 46
Tab. 29: Korn- und Stroherträge Winterroggen 2005 u. 2006 getrennt nach Beisaatvarianten. Versuchsstandort Müncheberg ... 47
Tab. 31: Wassergehalte der Bodenschichten [Masse %] von 0-90 cm Tiefe zum Zeitpunkt der Entnahme der N_{min}-Proben, Versuchsstandort Müncheberg ... 50
Tab. 32: Aufwuchs und Stickstoffmengen in TM von Raps, Leguminosen und Unkraut, Beprobungstermin: 04.11.2004, Müncheberg, 2004/05 .. 51
Tab. 33: Aufwuchs von Winterraps, legumen Beisaaten und Unkraut vom 08.11.2004 bzw. 24.10.05, Versuchsstandort Wilmersdorf ... 57
Tab. 34: Stickstoffgehalt im Aufwuchs von Winterraps, legumen Beisaaten und Unkraut vom 08.11.2004 bzw. 24.10.05, Versuchsstandort Wilmersdorf .. 57
Tab. 35: Stickstoffgehalte im Aufwuchs von Winterraps vom 08.11.2004 und 19.05.05, Abschätzung der N-Aufnahme von Raps nach Winter aus Leguminosenresiduen und Abschätzung der N-Fixierung der legumen Beisaaten, Versuchsstandort Wilmersdorf 58
Tab. 36: Aussaat-, Blüte- und Erntetermine und Zeitspanne zwischen Aussaat und Ernte der Erbsenversuche 2004 bis 2006 .. 71
Tab. 38: Mittelwerte des Aufwuchses von Untersaat und Unkraut am 24.08.2005....................... 81
Tab. 39: Nettopreise ohne Transport- und Umschlagkosten für Öko-Z-Saatgut im Frühjahr 2007, sowie im Exakt- und Praxisversuch im Wintergetreide eingemischte Aussaatmengen und Saatgutkosten ... 89
Tab. 40: Nettopreise ohne Transport- und Umschlagkosten für Öko-Z-Saatgut im Frühjahr 2007, sowie im Exakt- und Praxisversuch im Winterraps eingesetzte Aussaatmengen 91
1. Einleitung und Problemstellung

In Anbausystemen des ökologischen Landbaus ist Stickstoff der am häufigsten limitierende Wachstumsfaktor (Köpke, 1995; Olesen, 1996; Vereijken, 1997). Dies gilt im besonderen Maße für viehlos wirtschaftende Betriebe (Watson et al., 2002). Zum einen weisen sie durch den höheren Anteil an Marktfrüchten einen deutlich höheren Stickstoffexport auf, zum anderen verfügen sie durch das Fehlen von innerbetrieblichen Wirtschaftdüngern kaum über flexibel einsetzbare N-Ressourcen. Eine innerbetriebliche Optimierungsmöglichkeit bildet die Integration von Biogasanlagen (Möller et al., 2006), worauf an dieser Stelle jedoch nicht näher eingegangen werden soll.

Neben der Optimierung des Wirtschafts- bzw. Zukaufdüngeeinsatzes und der Reduktion der Nährstoffkonkurrenz durch ein effektives Unkrautmanagement, besteht die Optimierung der N-Versorgung im ökologischen Landbau im Wesentlichen aus den zwei Komponenten:

1. Reduzierung der NO₃-Auswaschungsverluste.
2. Erhöhung des N-Inputs durch die symbiotische N₂-Fixierung der Leguminosen.

Durch die Verknüpfung von Praxisversuchen auf Schlägen verschiedener Standorte mit Exaktversuchen auf den Flächen des 'Modellbetriebes Organischer Landbau' der Forschungsstation des ZALF am Standort Müncheberg und durch die Beteiligung zahlreicher Praktiker und des Bioland-Erzeugerringes sollten für die Anbauverfahren:

- Wintergetreidefrühsaat mit legumen Beisaaten
- Winterraps in 'Weiter Reihe' mit legumen Beisaaten
- Erbse / blaue Lupine mit (Klee-)Gras-Untersaat.

Folgende Arbeitsziele regionalspezifisch erreicht werden:

- Empfehlungen zur Anbauverfahrensgestaltung (Mischungspartner, Saatstärken, -termine und -techniken)
- Abschätzung von Ertrags- und Qualitätseffekten im Vergleich zu Standardverfahren
- Abschätzung und Bewertung von N-Input und N-Austragsreduktion
- Abschätzung der Wirkung der neuen Verfahren auf die Verunkrautung
- Abschätzung der Wirkung der einzelnen Verfahren auf die Erosionsgefährdung
- Ökonomische Bewertung der Verfahren mit besonderer Berücksichtigung der betriebseigenen Kosten pro Kilogramm N.
2. Material und Methoden

2.1 Charakterisierung der untersuchten Anbauverfahren

2.1.1 Anbauverfahren 1: Wintergetreide mit abfrierenden Körnerleguminosen als Beisaaten

In diesem Anbauverfahren wurden Hauptfrucht und Beisaat vor der Aussaat gemischt und gemeinsam in einem Arbeitsschritt möglichst früh ausgesät. Das heißt, dass die Aussaat ca. drei Wochen früher als der für diese Fruchtart regional übliche mittlere Aussaattermin war. Aussaat zu diesem Termin ohne Beisaaten wurden als Standardanbauverfahren in die Versuche integriert. Die Saatstärke der Hauptfrucht wurde dabei gegenüber dem Standardanbauverfahren um bis zu 50 % reduziert. Die beigemischten Körnerleguminosen wurden mit der Hälfte der für eine Reinsaat im Frühjahr üblichen Menge den Saatmischungen beigefügt. Um die Beisaat nicht zu beeinträchtigen, musste nach der Aussaat im Herbst auf ein Hacken oder Striegeln verzichtet werden.

2.1.2 Anbauverfahren 2: Winterraps mit abfrierenden Körnerleguminosen

Wie im Anbauverfahren 1 wurden auch in diesem Verfahren Körnerleguminosen zum gleichen Zeitpunkt wie die Hauptfrucht ausgesät. Die Aussaat erfolgte wegen der unterschiedlichen Korngrößen der Komponenten und der unterschiedlichen Anforderungen an die Ablagetiefe getrennt nach Raps und Leguminosen zum für die Hauptfrucht üblichen Zeitpunkt direkt nacheinander. Im Rahmen der Praxisversuche konnten durch den Einsatz neuer Saattechnik in einem Arbeitsschritt Raps und Körnerleguminosen abwechselnd je Drillreihe in verschiedenen Ablagetiefen ausgebracht werden.

2.1.3 Anbauverfahren 3: Körnerleguminosen mit Gras- und Kleegrasuntersaaten

Im Rahmen des Projektes wurden von 2004 bis 2006 an 13 Standorten in Brandenburg und Bayern Versuche zu drei Anbauverfahren durchgeführt. Dabei wurden 10 Exaktversuche am Standort Müncheberg und 32 Praxisversuche auf den Partnerbetrieben durchgeführt.
2.2 Versuchsstandorte

2.2.1 Geografische Lage

In Brandenburg liegen drei der Partnerbetriebe in der Region Müncheberg (ZALF) und einer in der Uckermark (Gut Wilmersdorf GbR).

2.2.2 Geologie und Boden

Betrieb 1

Betriebe 2, 3, 4 und der Modellbetrieb ‘Organischer Landbau Müncheberg’
Der Versuchsstandort Müncheberg repräsentiert die, in großen Teilen Nordostdeutschlands verbreiteten, grundwasserfernen, heterogenen Sandböden auch der benachbarten Betriebe 2, 3 und 4. Es sind hier vor allem die Bodentypen Braunerde, podsolige Braunerde, Fahlere und Parabraunerde zu finden. Nach der Deutschen Bodenschätzung dominieren die Bodenarten anlehmiger Sand und Sand (S14D und S4D). Die Bodenpunkte liegen zwischen 21 und 34, kleinflächig werden bis 43 erreicht. Für die Versuchsflächen weist die Bodenschätzungskarte drei Bewertungseinheiten auf: S4D (Bodenzahl 21 - 26), S14D (Bodenzahl 28 - 34) und S4D (Bodenzahl 37 - 43).

Betriebe 5, 6

Betriebe 7, 8, 9
Unterfranken ist geologisch geprägt durch die Gesteine des Trias. Buntsandstein, Muschelkalk und Keuper sind die bestimmenden Ausgangsgesteine. Die Betriebe verfügen teilweise über sehr gute Braunerde-Böden, die aus der Buntsandsteinverwitterung hervorgegangen sind. Braunerden sind auf allen drei Betrieben vorherrschend. Insgesamt weisen diese Betriebe die höchste Bodenheterogenität auf, was sich in der Spannweite der Bodenwertzahlen von 25 bis 75 widerspiegelt (Tab. 1).
Betrieb 10

Betriebe 11, 12

<table>
<thead>
<tr>
<th>Betrieb Nr.</th>
<th>Höhe über NN [m]</th>
<th>Bodenart</th>
<th>(Bodenpunkte nach Bodenschätzung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>Schwach lehmiger – lehmiger Sand</td>
<td>25-50</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Schwach lehmiger Sand</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>Schwach lehmiger Sand</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>Schwach lehmiger Sand – lehmiger Sand</td>
<td>22-40</td>
</tr>
<tr>
<td>5</td>
<td>490</td>
<td>Sandiger Lehm</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>490</td>
<td>Sandiger Lehm</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>230</td>
<td>Sandiger – toniger Lehm aus Kalkverwitterungsböden, viele Steine</td>
<td>25-75</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>Lehm</td>
<td>30-70</td>
</tr>
<tr>
<td>9</td>
<td>300</td>
<td>Toniger Lehm aus Muschelkalk</td>
<td>30-75</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>Lehmiger Sand</td>
<td>25-40</td>
</tr>
<tr>
<td>11</td>
<td>550</td>
<td>Schwach lehmiger Sand aus Buntsandstein</td>
<td>20-30</td>
</tr>
<tr>
<td>12</td>
<td>550</td>
<td>Schwach lehmiger Sand aus Buntsandstein</td>
<td>20-30</td>
</tr>
</tbody>
</table>

2.2.3 Klimatische und naturräumliche Zuordnung

Tab. 2: Einordnung der Versuchsstandorte in die Klimatische Gliederung der Bundesrepublik Deutschland

<table>
<thead>
<tr>
<th>Betrieb Nr.</th>
<th>Thermoklimatische Typisierung</th>
<th>Pluvioklimatische Typisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>Subkontinental</td>
<td>niederschlagsbenachteilt</td>
</tr>
<tr>
<td>5, 6</td>
<td>Subkontinental</td>
<td>niederschlagsnormal</td>
</tr>
<tr>
<td>7-10</td>
<td>Subkontinental-Submaritim</td>
<td>niederschlagsnormal</td>
</tr>
<tr>
<td>11, 12</td>
<td>Gebirgsklima</td>
<td>niederschlagsnormal-begünstigt</td>
</tr>
</tbody>
</table>

Tab. 3: Einordnung der Versuchsstandorte in Naturräume

<table>
<thead>
<tr>
<th>Betrieb Nr.</th>
<th>Landkreis</th>
<th>Gruppe der Naturländlichen Haupteinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uckermark</td>
<td>Rückland der Mecklenburgischen Seenplatte</td>
</tr>
<tr>
<td>2, 3</td>
<td>Märkisch Oderland</td>
<td>Ostbrandenburgische Platte</td>
</tr>
<tr>
<td>4</td>
<td>Oder-Spree</td>
<td>Ostbrandenburgische Platte</td>
</tr>
<tr>
<td>5, 6</td>
<td>Augsburg</td>
<td>Donau-Ille-Lech-Platten</td>
</tr>
<tr>
<td>7, 8, 9</td>
<td>Würzburg</td>
<td>Mainfränkische Platten</td>
</tr>
<tr>
<td>10</td>
<td>Erlangen-Höchstadt</td>
<td>Fränkisches Keuper-Lias-Land</td>
</tr>
<tr>
<td>11, 12</td>
<td>Wunsiedel</td>
<td>Thüringisches-Fränkisches Mittelgebirge</td>
</tr>
</tbody>
</table>

Da die Phänologie als ein Faktor des Naturländpotenzials im klimatisch-biologischen Bereich einen ähnlichen Stellenwert wie der Boden in der physiogeographischen Betrachtung besitzt (Chen, 1994), ist die Betrachtung der Versuchsstandorte unter dem Gesichtspunkt der naturländlichen Gliederung bzw. Einordnung von grundlegender Bedeutung für die Beurteilung der Versuchsergebnisse. Die Versuchsstandorte sind verschiedenen Naturländen zuzuordnen (Abb. 2, Tab. 3). Hinsichtlich der phänologischen Entwicklung der untersuchten Kulturpflanzen ist diese unterschied-
liche Einstufung in soweit von Bedeutung, dass die Unterschiede zwischen den Naturräumen ausreichend groß sind, um eine regional differenzierte Betrachtung der Versuchsresultate zu ermöglichen.

Der Modellbetrieb „Organischer Landbau Müncheberg“ als Standort der Exaktversuche weist die gleiche naturräumliche Zuordnung wie die Betriebe zwei und drei auf.

2.2.4 Wetterdaten

Für den Standort am ZALF und den Standort im Fichtelgebirge waren Wetterstationen unmittelbar an den Versuchsflächen bzw. direkt auf dem Betrieb vorhanden. Für die anderen Standorte wurde auf die nächstgelegene, verfügbare Station des DWD zurückgegriffen:

Über den Witterungsverlauf während des Versuchszeitraumes Herbst 2004 bis Herbst 2006 lässt sich übereinstimmend für alle Standorte feststellen, dass die Temperaturen im Jahresmittel höher und die Niederschläge niedriger als im langjährigen Mittel waren (Tab. 4).

<table>
<thead>
<tr>
<th></th>
<th>Niederschlag [mm]</th>
<th>Temperatur [˚C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braunersgrün (Fichtelgeb.)</td>
<td>677 (780)</td>
<td>7,1 (6,5)</td>
</tr>
<tr>
<td>Müncheberg</td>
<td>483 (531)</td>
<td>9,3 (8,2)</td>
</tr>
<tr>
<td>Angermünde (Wilmersdorf)</td>
<td>476 (515)</td>
<td>9,2 (9,1)</td>
</tr>
<tr>
<td>Gablingen (Augsburg)</td>
<td>694 (767)</td>
<td>8,1 (7,6)</td>
</tr>
<tr>
<td>Helmstadt (Würzburg)</td>
<td>619 (705)</td>
<td>9,6 (9,0)</td>
</tr>
</tbody>
</table>

Betrachtet man die einzelnen Monatswerte ausgesuchter Stationen (Müncheberg; Abb. 3, Braunersgrün; Abb. 5 und Gablingen; Abb. 6) so wird deutlich, dass Temperaturentwicklung und Niederschlagsverteilung in den jeweiligen langjährigen Mittelwerten durchaus Ähnlichkeiten aufweisen. Von Bedeutung für die Exaktversuche sind insbesondere die große Differenz der Absolutwerte im Temperaturverlauf und die deutlich geringere Niederschlagsmenge von September bis Oktober am Standort Müncheberg.
Abb. 3: Monatswerte von Niederschlag und Durchschnittstemperaturen der Station Müncheberg

Abb. 4: Monatswerte von Niederschlag und Durchschnittstemperaturen der Station Angermünde

Abb. 5: Monatswerte von Niederschlag und Durchschnittstemperaturen der Station Braunersgrün
2.3 Versuchsdurchführung

2.3.1 Anbauverfahren 1: Wintergetreide mit abfrierenden Körnerleguminosen als Beisaaten

2.3.1.1 Praxisversuche

Die Anlage der Versuche erfolgte im Beisein von Projektmitarbeitern.

Abb. 8: Versuchsplan der Praxisversuche im Anbauverfahren 1

Es wurden insgesamt sieben Langparzellen je Versuch angelegt. Die Versuchslänge betrug mindestens 100 m und lag in der Regel über 200 m.

Im ersten Versuchs¬jahr (früh gesäetes Wintergetreide) wurden pro Versuch drei verschiedene Beisaatvarianten getestet: zwei unterschiedliche Leguminosenbeisaaten sowie ohne Beisaat als Kontrolle. Im zweiten Versuchs¬jahr wurde in zwei zusätzlichen Parzellen die betriebsübliche Anbauvariante (i. d. R. späterer Saattermin mit einer höheren Saatstärke) der Hauptfrucht ausgesät.

Im Herbst erwiesen sich für Nieder- und Hochwild die legumen Beisaaten als eine hochattraktive Äsung, was zu teilweise großflächigem Wildverbiss führte. In der Uckermark wurden die Versuche daher bis zum Abfrieren der Leguminosen generell mit einem Wildschutzzaun umgeben. Auch auf den ZALF Versuchsflächen mussten Wildschutzmaßnahmen ergriffen werden. Der Verbiss war auf den anderen Versuchsstandorten von

Die Wintergetreidearten Winterroggen, Triticale und Winterweizen wurden auf ihre Eignung für die Anbauverfahren Frühsaat und Leguminosenbeisaat geprüft. Die Verteilung der Fruchtarten auf die einzelnen Versuchsbetriebe erfolgte gemäß ihrer standörtlichen Eignung. Entsprechendes gilt für die Auswahl der legumen Saatpartner. Der Tab. 5 ist die betriebsspezifische Auswahl der Fruchtarten, deren Vorfrüchte und Saatmischungspartner zu entnehmen:

Tab. 5: Praxisversuche Wintergetreide mit legume Beisaaten

<table>
<thead>
<tr>
<th>Betr. Nr.</th>
<th>Erntejahr</th>
<th>Aussaat-termin</th>
<th>Vorfrucht</th>
<th>Fruchtart</th>
<th>Beisaatvarianten</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2006</td>
<td>16. Sept</td>
<td>KGR</td>
<td>WWE</td>
<td>ABO SWI</td>
</tr>
<tr>
<td>7</td>
<td>2006</td>
<td>26. Sept.</td>
<td>KGR</td>
<td>WWE</td>
<td>FER SWI</td>
</tr>
<tr>
<td>8</td>
<td>2005</td>
<td>08. Sept.</td>
<td>SKA</td>
<td>WWE</td>
<td>FER SWI</td>
</tr>
<tr>
<td>8</td>
<td>2006</td>
<td>19. Sept.</td>
<td>SKA</td>
<td>WWE</td>
<td>FER SWI</td>
</tr>
<tr>
<td>10</td>
<td>2005</td>
<td>26. Sept.</td>
<td>KGR</td>
<td>WWE</td>
<td>ABO SWI</td>
</tr>
<tr>
<td>10</td>
<td>2006</td>
<td>24. Sept.</td>
<td>KGR</td>
<td>WWE</td>
<td>ABO SWI</td>
</tr>
<tr>
<td>3</td>
<td>2005</td>
<td>27. Aug.</td>
<td>KGR</td>
<td>TRI</td>
<td>FER BLU</td>
</tr>
<tr>
<td>3</td>
<td>2006</td>
<td>26. Sept.</td>
<td>KGR</td>
<td>TRI</td>
<td>FER BLU</td>
</tr>
<tr>
<td>4</td>
<td>2005</td>
<td>28. Sept.</td>
<td>WRO</td>
<td>TRI</td>
<td>FER BLU PEL<sup>1</sup></td>
</tr>
<tr>
<td>1</td>
<td>2005</td>
<td>2. Sept.</td>
<td>WRO</td>
<td>WRO</td>
<td>FER BLU PEL<sup>1</sup> SWI</td>
</tr>
<tr>
<td>1</td>
<td>2006</td>
<td>7. Sept.</td>
<td>WRO</td>
<td>WRO</td>
<td>FER BLU</td>
</tr>
<tr>
<td>2</td>
<td>2005</td>
<td>2. Sept.</td>
<td>WRA</td>
<td>WRO</td>
<td>FER BLU</td>
</tr>
<tr>
<td>2</td>
<td>2006</td>
<td>20. Sept.</td>
<td>WRO</td>
<td>WRO</td>
<td>FER BLU</td>
</tr>
<tr>
<td>5</td>
<td>2005</td>
<td>14. Sept.</td>
<td>WWE</td>
<td>WRO</td>
<td>ABO SWI</td>
</tr>
<tr>
<td>5</td>
<td>2006</td>
<td>20. Sept.</td>
<td>WWE</td>
<td>WRO</td>
<td>ABO SWI</td>
</tr>
<tr>
<td>11</td>
<td>2005</td>
<td>15. Sept.</td>
<td>SGE</td>
<td>WRO</td>
<td>FER SWI</td>
</tr>
<tr>
<td>11</td>
<td>2006</td>
<td>12. Sept.</td>
<td>SGE</td>
<td>WRO</td>
<td>FER SWI</td>
</tr>
<tr>
<td>12</td>
<td>2005</td>
<td>15. Sept.</td>
<td>DIN</td>
<td>WRO</td>
<td>FER SWI</td>
</tr>
<tr>
<td>12</td>
<td>2006</td>
<td>12. Sept.</td>
<td>FER</td>
<td>WRO</td>
<td>FER SWI</td>
</tr>
</tbody>
</table>

¹ PEL = Peluschke (Pisum sativum convar. arvense)

ABO = Ackerbohne	BLU = blaue Süßlupine	SKA = Speisekartoffel
DIN = Dinkel	FER = Futtererbse	SMA = Silomais
KGR = Kleegras	WRO = Winterroggen	SWI = Sommerwicke
PEL = Peluschke	WWE = Winterweizen	TRI = Triticale

WRA = Winterraps

2.3.1.2 Exaktversuche

<table>
<thead>
<tr>
<th>Kultur</th>
<th>Winterroggen</th>
<th>Triticale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorte</td>
<td>Born</td>
<td>Modus</td>
</tr>
<tr>
<td>Saatstärke früh/spät</td>
<td>[keimf. Kö. m⁻²]</td>
<td>[keimf. Kö. m⁻²]</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>310</td>
</tr>
</tbody>
</table>

Beisaaten (nur frühe Aussaat): Keine Beisaat 0
Keine Beisaat 0
Futtererbse 35
Peluschke 40
Sommerwicke 50
Blaue Süßlupine 50

2.3.2 Anbauverfahren 2: Winterraps mit abfrierenden Körnerleguminosen
2.3.2.1 Praxisversuche
Betrieb die Technik der Firma Väderstadt zur Verfügung gestellt, die für die Versuchs-
durchführung notwendig war. Diese neuartige Sätechnik wurde für das Winterrapsanbau-
verfahren eingesetzt, da diese erstmalig ermöglichte, unter Praxisbedingungen in einem
Arbeitsgang die beiden Saatpartner in ihren Saatreihen mit jeweils angepassten Saattiefen
abzulegen (Winterraps: Reihenabstand 25 cm, Saattiefe 2 cm, Saatmenge 55/75 keimfähige
Körner m⁻² Körnerleguminosen: Reihenabstand 25 cm, Saattiefe 4 cm, Saatmenge
2004/2005, 50/35 keimf. Körner m⁻²). Hierzu wurde eine Sämaschine der Marke Väder-
stadt Rapid 300 C, die über einen zweiteiligen Saatank verfügt, umgebaut. Die erste Reihe
von Drillscharen, die normalerweise aus dem vorderen Teil des Saatgutbehälters beschickt
wird, wurde deaktiviert und die dazugehörigen Zuführungsschläuche vom Saatgutbehälter
auf die mittlere Drillschar-Reihe ummontiert, so dass die mittlere und hintere Reihe aus
verschiedenen Teilen des Saatgutanks beschickt wurden. Da die hintere und die mittlere
Reihe um eine Reihenbreite versetzt arbeiten, konnten so Leguminosen und Raps in
wechselnden Reihen ausgebracht werden. Durch ein schräges Anstellen der Sämaschine
konnte zusätzlich eine unterschiedliche Ablagetiefe für die mittlere und die hintere Schar-
reihe erreicht werden. (s. Abb. 9).

Abb. 9: Väderstad Rapid 300 C mit geteilter Saatgutank

Der Versuch wurde als Langparzellenversuch entsprechend der Praxisversuche im Verfah-
ren 1 angelegt. Im ersten Jahr konnten aufgrund eines Defektes des Sämaschinengegetriebes
nur vier der sieben geplanten Langparzellen angelegt werden (Raps ohne Beisaat, Raps mit
Erbsen, Raps mit Lupinen, Raps ohne Beisaat). Die Aussaat erfolgte am 17. August 2004
und am 16. August 2005. Saatstärke und Saatgut wurden in den Praxis- und Exaktversu-
chen gleich gehalten.
2.3.2.2 Exaktversuche

Tab. 7: Kulturdaten für die Aussaat des Winterraps-Exaktversuchs im Jahr 2004

<table>
<thead>
<tr>
<th>Saatpartner</th>
<th>Sorte</th>
<th>Saatstärke [keimf. Kö. m⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winterraps</td>
<td>OASE</td>
<td>55</td>
</tr>
<tr>
<td>mit Beisaat</td>
<td>ohne Beisaat</td>
<td></td>
</tr>
<tr>
<td>Erbse</td>
<td>Harnas (halbblattlos)</td>
<td>35</td>
</tr>
<tr>
<td>Blaue Süßlupine</td>
<td>Bora (Verzweigungstyp)</td>
<td>35</td>
</tr>
</tbody>
</table>

Tab. 8: Kulturdaten für die Aussaat des Winterraps-Exaktversuchs im Jahr 2005

<table>
<thead>
<tr>
<th>Saatpartner</th>
<th>Sorte</th>
<th>Saatstärke [keimf. Kö. m⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winterraps</td>
<td>OASE</td>
<td>55</td>
</tr>
<tr>
<td>mit Beisaat</td>
<td>ohne Beisaat</td>
<td></td>
</tr>
<tr>
<td>Serradella</td>
<td>Ciro</td>
<td>288</td>
</tr>
<tr>
<td>Perserklee</td>
<td>Harnas (halbblattlos)</td>
<td>290</td>
</tr>
<tr>
<td>Erbse</td>
<td>Bora (Verzweigungstyp)</td>
<td>35</td>
</tr>
<tr>
<td>Blaue Süßlupine</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>
Aufgrund von starkem Wildverbiss im Keimblattstadium an der Süßlupine wurde diese Anfang September auf sämtlichen Parzellen dieser Faktorstufe nachgesät.

2.3.3 Anbauverfahren 3: Körnerleguminosen mit Gras und Kleegrasuntersaat

2.3.3.1 Praxisversuche

2.3.3.2 Exaktversuche

statt Knaulgras (*Dactylis glomerata*) der ‚Härtlicher Schwingel’ (*Festuca ovina duriuscula*) als schwachwüchsigere Grasart eingesetzt. Der Versuch wurde als randomisierte Blockanlage mit den zwei Hauptfruchtarten mit je fünf Saatvarianten in fünf Blöcken angelegt. Die Kernparzellengröße betrug 2 auf 12 m.

Tab. 9: Versuchsvarianten im Exaktversuch zum Anbauverfahren 2

<table>
<thead>
<tr>
<th>Kultur</th>
<th>Erbse</th>
<th>Blaue Süßlupine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorte</td>
<td>Harnas</td>
<td>Bora</td>
</tr>
<tr>
<td>Saatstärke</td>
<td>90 keimf. Kö. m²</td>
<td>125 keimf. Kö. m²</td>
</tr>
</tbody>
</table>

Untersaatvarianten

- Keine Untersaat
- Deutsches Weidelgras, Sorte Pedro, (15 kg/ha)
- Knaulgras, Sorte Lidaglo, (10 kg/ha)
- Deutsches Weidelgras, Sorte Pedro + Weiße Klee Sorte Lirepa (12+4 kg/ha)
- Knaulgras, Sorte Lidaglo + Weiße Klee Sorte Lirepa (9+3 kg/ha)

2.4 Untersuchungen

2.4.1 Bodenanalysen

Je nach Bodenverhältnissen und Freigabe durch den Munitionsräumdienst des Bundes wurden die Proben zur N_{min}-Bestimmung bis 60 bzw. 90 cm entnommen. Grabungen von mehr als 60 cm Tiefe sind in Brandenburg per Landesgesetz erst nach Freigabe der Grabungsstelle durch den Munitionsräumdienst zulässig. An Krumenproben wurden folgende bodenchemische Parameter erfasst: pH-Wert, N, C, P$_{DL}$, K$_{DL}$ und Mg$_{DL}$.

2.4.2 Pflanzenuntersuchungen

2.4.2.1 Bestandesentwicklung und oberirdischer Aufwuchs

Die Bestandesentwicklung wurde anhand folgender Parameter erfasst:

- Feldaufgang
- Entwicklungsstadien nach BBCH-Code
- Deckungsgrad der Kulturpflanzen
- Deckungsgrad der Untersaat
- Deckungsgrad der Unkräuter
- Mittlere Wuchshöhe der Kulturpflanzen
- Mittlere Wuchshöhe der Untersaat
- Mittlere Wuchshöhe des Unkrautes

2.4.2.2 Erntegut

2.5 Verwendete Software
Zur Ertragsdatengewinnung aus den Datenfiles der Onlineertragserfassung wurde die Software Agromap verwendet.

Die statistische Auswertung und grafische Darstellung erfolgte mit der Statistiksoftware SPSS 12.0 und SAS 9.1.

Für die anschließende varianzanalytische Auswertung wurde die Beschaffenheit der Datenqualität hinsichtlich Normalverteilung mit dem Kolmogorov-Smirnov-Test geprüft. War die Normalverteilung nicht gegeben, wurden nichtparametrische Tests (Kruskal-Wallis) eingesetzt. Als Post Hoc Test wurde der Tukey HSD Test verwendet.
3. Ergebnisse und Diskussion

3.1 Anbauverfahren 1: Wintergetreide mit abfrierenden Körnerleguminosen als Beisaaten

3.1.1 Praxisversuche zu Winterweizen

Ziel der Winterweizenversuche mit abfrierenden Körnerleguminosen war es, mit einer Vorverlagerung des Saatzeitpunktes den legumen Beisaaten eine längere Wachstumsphase und damit N\textsubscript{2}-Fixierung zu ermöglichen und bei gleichzeitig angepasster, das heißt reduzierter Aussaatstärke, die Anbausicherheit von Winterweizen bei gleichbleibender oder verbesserter Qualität zu erhöhen.

Im Herbst des Jahres 2005 wurden die Weizenpflanzen in den Frühsaatparzellen außerdem stellenweise stark durch das Gelbverzwergungsvirus geschädigt. Betroffen waren alle vier

Bei den Versuchen, in denen durch großflächiges Lager keine Kleinparzellenbeerntung mehr möglich war, wurde eine Erhebung der Erntemengen mit dem Betriebsmähdrescher durchgeführt. So wurden auf Betrieb 8 zumindest die Frühsaat-Parzellen und die Spätsaat-Parzellen gesondert beerntet (Tab. 10). Beide Varianten wurden separat gedroschen und die Erntemengen getrennt auf einer geeichten, stationären Waage gewogen. Der Versuch entsprach damit in seiner Ausprägung einem Tastversuch, dem nur eine geringe Aussagekraft zugesprochen werden kann (Stein-Bachinger et al., 2000). Dennoch können deutlich auftretende Unterschiede als Wirkungen der Versuchsvarianten interpretiert werden.

Die erheblichen Differenzen in Ertrag und Qualität zwischen früh und spät gesätem Weizen zeigten, dass an diesem Standort für das Jahr 2005 die frühe Saat von Weizen unvorteilhaft war. Der im Herbst weniger üppig entwickelte Spätsaatbestand konnte die bereits erwähnte hohe N-Versorgung besser in Ertrag umsetzen. Mit 71 dt ha-1 (Tab. 10) erreichte die in der beschreibenden Sortenliste mit sehr geringer Standfestigkeit eingestufte Sorte Achat unter den Bedingungen des ökologischen Landbaus (Verzicht auf Halmstabilsatoren) die Grenze ihrer ertraglichen Leistungsfähigkeit.

<table>
<thead>
<tr>
<th>Saatzeitpunkt</th>
<th>Ertrag [dt ha-1]</th>
<th>Protein [%]</th>
<th>Feuchtkleber [%]</th>
<th>Kleberindex</th>
<th>Sediment.-wert [Eh]</th>
<th>Fallzahl [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Früh (8.Sept.)</td>
<td>42</td>
<td>13,9</td>
<td>30,8</td>
<td>72</td>
<td>47</td>
<td>71</td>
</tr>
<tr>
<td>Spät (30.Sept.)</td>
<td>71</td>
<td>13,2</td>
<td>27,1</td>
<td>91</td>
<td>57</td>
<td>245</td>
</tr>
</tbody>
</table>

*) Betriebsüblicher Aussaattermin zu beiden Seiten der Frühsaat/Beisaatvarianten

Tab. 10: Ernteparameter Winterweizen 2005, getrennt nach früher und später (betriebsüblicher Aussaat, Betrieb 8)

Im einzigen in 2005 kleinparzellenweise beernteten Versuch erbrachte die Saatvariante 'Beisaat mit Futtererbse' einen um 2 dt ha\(^{-1}\) tendenziell höheren Ertrag als die Variante 'ohne Beisaat' (Tab. 11). Dagegen erreichte die Variante mit 'Beisaat mit Sommerwicke' keinen gesicherten Mehrertrag. Aufgrund der Ergebnisse von 2005 wurden ab 2006 Spätsaatvarianten in die Praxisversuche integriert.

Tab. 11: Erträge, Rohproteingehalte und TKM-Werte von Winterweizen bei verschiedenen Saatvarianten der Praxisversuche Bayern 2005 und 2006

<table>
<thead>
<tr>
<th>Betriebsnr.:</th>
<th>7</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beisaat- variante</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWi</td>
<td>18,9 b</td>
<td>38,0</td>
<td>44,3</td>
<td>11,7</td>
</tr>
<tr>
<td>ABO/FER</td>
<td>20,4 b</td>
<td>37,2</td>
<td>45,1</td>
<td>11,7</td>
</tr>
<tr>
<td>ohne</td>
<td>18,6 a</td>
<td>38,5</td>
<td>45,4</td>
<td>11,7</td>
</tr>
<tr>
<td>Spät</td>
<td>45,5</td>
<td>12,0</td>
<td>37,3 a</td>
<td>52,8 ab</td>
</tr>
<tr>
<td>HSD (α=0,05)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>1,9</td>
<td>5,5</td>
</tr>
</tbody>
</table>

1) SoWi = Sommerwicke; 2) ABO = Ackerbohne (Betrieb 6 u. 10) FER = Futtererbse (Betrieb 8);

Tab. 12: Aufwuchsbonitur * der legumen Beisaaten in Winterweizen der Versuche 2005 und 2006 von Betrieb 6, 8 u. 10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsnr.:</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>SoWi</td>
<td>0</td>
<td>SoWi</td>
<td>0</td>
<td>SoWi</td>
<td>0</td>
</tr>
<tr>
<td>FER</td>
<td>++</td>
<td>ABO</td>
<td>+/0</td>
<td>FER</td>
<td>+</td>
</tr>
</tbody>
</table>

*) Boniturschema: - = kaum entwickelt; 0 = schlecht entwickelt; + = entwickelt; ++ = gut entwickelt; +++ = sehr gut entwickelt; Die Boniturnoten geben den visuellen Gesamteindruck aus Bestandesdichte und –höhe des Projekt durchführenden bei einer mehrtägigen Rundreise wieder.

Die vorliegenden zweijährigen Versuchsergebnisse lassen noch keine abschließende Bewertung zu, jedoch können folgende Tendenzen abgeleitet werden:

Folgende Vorteile sprechen für das Verfahren: Die zeitliche Flexibilisierung des Aussaatterms und ein deutlich verbesserter Erosionsschutz (Wind- und Wassererosion) im Herbst und im zeitigen Frühjahr, da mit Frühsaat auch bei Weizen Deckungsgrade über 50 % sicher zu erreichen sind, die nach Frielinghaus et al. (1997) für einen sicheren
Erosionsschutz notwendig sind. Durch die verbesserte N-Aufnahme vor dem Winter sind auf leichteren Böden geringere N-Austräge zu erwarten.

3.1.2 Praxisversuche zu Winterroggen und Triticale

Wie schon wiederholt gezeigt (Bachinger und Stein-Bachinger, 2000; Pauly und Bachinger, 1997), kann eine Saatzeitverfrühung bei Winterroggen im Gegensatz zu Winterweizen unter den klimatischen Bedingungen Brandenburgs zu deutlichen Ertragssteigerungen führen. Die längere Wachstumsperiode vor Winter bedingt eine deutlich stärkere Biomasseentwicklung, die zum einen durch eine bessere Ausnutzung der N-Mineralisation das Risiko von N-Austrägen reduziert und zum anderen durch schneller erreichte und deutlich höhere Deckungsgrade einen effektiven Erosionsschutz gewährleistet.

Der Hauptuntersuchungsschwerpunkt der Praxis- wie auch der Exaktversuche zu Winterroggen und Triticale war, inwieweit abfrierende Körnerleguminosen durch eine zusätzliche N-Bindung und Biomassebildung den positiven Ertragseffekt der Frühsaaten verstärken können.

In Tab. 13 und Tab. 14 sind die Triticale- und Winterroggenversuche in Brandenburg 2004/05 und 2005/06 dargestellt. Durch die legumen Beisaaten ergaben sich keinerlei Ertragserhöhungen. Bei Triticale zeigten sich allerdings an den Qualitätsparametern des
Erntegutes wie Rohproteingehalt oder TKM keine positiven Einflüsse der Beisaatvarianten. Auch gut entwickelte Beisaaten (Tab. 15) bewirkten keinen positiven Ertragseffekt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>beisaat-variante</td>
<td>Ertrag [dt ha⁻¹]</td>
<td>TKM [g]</td>
<td>Ertrag [dt ha⁻¹]</td>
<td>RP [%]</td>
</tr>
<tr>
<td>ohne</td>
<td>11,9</td>
<td>34,9</td>
<td>35,3</td>
<td>8,9</td>
</tr>
<tr>
<td>BLU</td>
<td>11,9</td>
<td>30,9</td>
<td>37,2</td>
<td>8,6</td>
</tr>
<tr>
<td>ERB</td>
<td>15,4</td>
<td>34,7</td>
<td>35,5</td>
<td>8,8</td>
</tr>
<tr>
<td>PEL</td>
<td>13,9</td>
<td>32,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSD (α=0,05)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>(α=0,1)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Tab. 14: Erträge, Rohproteingehalte und TKM-Werte von Winterroggen bei verschiedenen Beisaatvarianten; Praxisversuche Brandenburg 2005-2006

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>beisaat-variante</td>
<td>Ertrag [dt ha⁻¹]</td>
<td>TKM [g]</td>
<td>Ertrag [dt ha⁻¹]</td>
<td>TKM [g]</td>
</tr>
<tr>
<td>ohne</td>
<td>31,2</td>
<td>25,1</td>
<td>26,1</td>
<td>84,9</td>
</tr>
<tr>
<td>BLU</td>
<td>35,3</td>
<td>22,7</td>
<td>26,5</td>
<td>85,9</td>
</tr>
<tr>
<td>ERB</td>
<td>32,7</td>
<td>21,9</td>
<td>26,0</td>
<td>81,6</td>
</tr>
<tr>
<td>PEL</td>
<td>37,3</td>
<td>78,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWI</td>
<td>29,6</td>
<td>84,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSD (α=0,05)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>(α=0,05)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

*1) Trockenmasse des Grünschnittes vom 6. Juni 06; Da zu diesem Termin keine Unterschiede zwischen den Varianten zu erkennen war, wurde auf eine Druschernte verzichtet.

Tab. 15: Aufwuchsbonitur der legumen Beisaaten, Winterroggen/Triticale, Praxisversuche Brandenburg 2005-2006;

<table>
<thead>
<tr>
<th>Betriebsnr</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptfrucht</td>
<td>WRO</td>
<td>WRO</td>
<td>WRO</td>
<td>WRO</td>
<td>TRI</td>
<td>TRI</td>
<td>TRI</td>
</tr>
<tr>
<td>legume Beisaaten</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
</tr>
<tr>
<td></td>
<td>BLU</td>
<td>BLU</td>
<td>BLU</td>
<td>BLU</td>
<td>BLU</td>
<td>BLU</td>
<td>BLU</td>
</tr>
<tr>
<td></td>
<td>PEL</td>
<td>PEL</td>
<td>PEL</td>
<td>PEL</td>
<td>PEL</td>
<td>PEL</td>
<td>PEL</td>
</tr>
<tr>
<td>Aufwuchs- bonitur *)</td>
<td>+</td>
<td>+/0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

Boniturschema: - = kaum entwickelt; 0 = schlecht entwickelt; + = entwickelt; ++ = gut entwickelt; +++ = sehr gut entwickelt; Die Boniturnoten geben den visuellen Gesamteindruck aus Bestandesdichte und –höhe des Projekt durchführenden bei einer mehrtägigen Rundreise wieder.

Im Gegensatz zu den Brandenburger Praxisversuchen zeigten sich bei der Hälfte der in Bayern in 2005 beemtetem Versuchen bei den Varianten mit legumen Beisaaten signifikant höhere Erträge (Tab. 16). Darüber hinaus war bei einem weiteren Versuch die TKM bei der Beisaatvariante mit Erbsen signifikant erhöht. Ein vergleichbarer positiver Ertragseffekt trat 2006, wenn auch nur tendenziell ($\alpha = 0,1$), bei Betrieb 11 auf (Tab. 17). In diesem Versuch war es den Frühsaatvarianten mit Beisaat allerdings nur möglich, die Ertragsreduktion der Saatzeitverfrühung zu kompensieren.

Tab. 16: Erträge, Rohproteingehalte und TKM-Werte von Winterroggen bei verschiedenen Beisaatvarianten, Praxisversuche Bayern 2005

<table>
<thead>
<tr>
<th>Betriebsnr.</th>
<th>5</th>
<th>9</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beisaat- variante</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag [dt ha$^{-1}$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TKM [g]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag [dt ha$^{-1}$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TKM [g]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag [dt ha$^{-1}$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TKM [g]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag [dt ha$^{-1}$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TKM [g]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABO† / ERB</td>
<td>47,6 b</td>
<td>30,4 b</td>
<td>28,4</td>
<td>17,2</td>
</tr>
<tr>
<td>SWI</td>
<td>44,8 b</td>
<td>30,5</td>
<td>30,4</td>
<td>19,7</td>
</tr>
<tr>
<td>ohne</td>
<td>37,3 a</td>
<td>27,6 a</td>
<td>27,5</td>
<td>18,2</td>
</tr>
<tr>
<td>HSD ($\alpha = 0,05$)</td>
<td>4,8</td>
<td>1,8</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

† ABO bei Betrieb 5
Tab. 17: Winterroggen Praxisversuche Bayern 2006: Erträge, Rohproteingehalte und TKM-Werte der verschiedenen Beisaatvarianten

<table>
<thead>
<tr>
<th>Betriebsnr.</th>
<th>5</th>
<th>9</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussaattermin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beisaatvariante</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertrag [dt ha(^{-1})]</td>
<td>TKM [g]</td>
<td>Ertrag [dt ha(^{-1})]</td>
<td>TKM [g]</td>
<td>Ertrag [dt ha(^{-1})]</td>
</tr>
<tr>
<td>Früh, ABO/ERB</td>
<td>37,1</td>
<td>30,9</td>
<td>41,2</td>
<td>29,6</td>
</tr>
<tr>
<td>Früh, SWI</td>
<td>34,3</td>
<td>30,5</td>
<td>41,1</td>
<td>29,4</td>
</tr>
<tr>
<td>Früh, ohne spät *</td>
<td>36,0</td>
<td>30,6</td>
<td>39,5</td>
<td>30,5</td>
</tr>
<tr>
<td>HSD ((\alpha = 0,05 / 0,1^*))</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

*1 3 Wo. später was den regional/betriebsüblichen Termin entspricht

Tab. 18: Winterroggen Praxisversuche Bayern 2005 und 2006; Aufwuchsbonitur der legumen Beisaaten

<table>
<thead>
<tr>
<th>BetriebsNr</th>
<th>5</th>
<th>5</th>
<th>9</th>
<th>9</th>
<th>11</th>
<th>11</th>
<th>12</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>legume Beisaaten</td>
<td>ABO</td>
<td>ABO</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
<td>FER</td>
</tr>
<tr>
<td>Aufwuchs- bonitur *2</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>0/-</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Boniturschema: - = kaum entwickelt; 0 = schlecht entwickelt; + = entwickelt; ++ = gut entwickelt; +++ = sehr gut entwickelt. Die Boniturnoten geben den visuellen Gesamteindruck aus Bestandesdichte und –höhe des Projektdurchführenden bei einer mehrtägigen Rundreise wieder.

3.1.3 Exaktversuche zu Triticale und Winterroggen
3.1.3.1 Entwicklung der Triticalebestände vor Winter

<table>
<thead>
<tr>
<th>Boniturfeldatum:</th>
<th>1.11.2004</th>
<th>23.10.2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>Kultur</td>
<td>Beisaat</td>
</tr>
<tr>
<td>ohne Beisaat, früh</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Blaue Lupine</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Erbse</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Peluschke</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>späte Saat</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 20: Aufwuchs von Kultur und Beisaat zu Beginn der Winterruhe in den Jahren 2004 und 2005. Triticale, Versuchsstandort Müncheberg (Die Unkrauttrockenmasse lag deutlich unter 0,5 dt ha⁻¹ und wird deshalb nicht getrennt aufgeführt)

<table>
<thead>
<tr>
<th>Probenahmedatum:</th>
<th>1.11.2004</th>
<th>01.11.2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trockenmasse [dt ha⁻¹]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variante</td>
<td>Kultur</td>
<td>Beisaat</td>
</tr>
<tr>
<td>ohne Beisaat, früh</td>
<td>6,4 b</td>
<td>-</td>
</tr>
<tr>
<td>Blaue Lupine</td>
<td>6,6 b</td>
<td>0,6 a</td>
</tr>
<tr>
<td>Erbse</td>
<td>7,9 b</td>
<td>2,3 b</td>
</tr>
<tr>
<td>Peluschke</td>
<td>5,7 b</td>
<td>3,2 b</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>6,5 b</td>
<td>1,2 ab</td>
</tr>
<tr>
<td>späte Saat</td>
<td>2,2 a</td>
<td>-</td>
</tr>
<tr>
<td>HSD (α=0,05)</td>
<td>2,5</td>
<td>1,3</td>
</tr>
</tbody>
</table>
Von besonderem Interesse für die Bewertung der Anbauverfahren sind sowohl die Unterschiede in der Aufwuchsleistung vor Winter zwischen den Frühsaatvarianten mit bzw. ohne Beisaat und als auch die Unterschiede zwischen den Frühsaatvarianten und der Spätsaat. Weiterhin ist die unkrautunterdrückende Wirkung der einzelnen Varianten von Bedeutung.

In beiden Jahren war der Unkrautaufwuchs für eine quantitative Entwicklung zu gering. Dennoch sprechen die Deckungsgrade von Beisaat und Unkraut der früh gesäten Varianten mit und ohne Beisaat 2005 für eine unkrautunterdrückende Wirkung der Beisaaten.

Die N-Mengen im Aufwuchs der Triticale, der Beisaaten und die N_{\text{min}}-Mengen im Boden von 0-60 cm im Herbst 2004 sind in Abb. 10 wiedergegeben. Vor Winter nahm die Spätsaat deutlich weniger N auf als alle Frühsaatvarianten, was sich auch in den entsprechend höheren N_{\text{min}}-Werten (0-60 cm Bodentiefe) vom 03. Nov. 2004 widerspiegelte. Die gesamte von der Triticale aufgenommene N-Menge addiert mit dem mineralisierten Stickstoff im Profil war bei Frühsaat ohne Beisaat und Spätsaat gleich. Anhand der im Rahmen der N_{\text{min}}-Analyse bestimmten Wassergehalte mit unter 10% im Unterkrumenbereich ist eine Sickerwasserbildung vor Winter auszuschließen.

Die Beisaaten erreichten im Aufwuchs N-Mengen (N_{\text{TM}}) zwischen 3 (Blaue Lupine) und 17 kg ha\(^{-1}\) (Peluschke). Bei vergleichbaren N_{\text{min}}-Mengen im Bodenprofil und nicht signifikant unterschiedlichen N_{\text{TM}}-Mengen in der Triticale aller Frühsaatvarianten ergibt eine Differenz zwischen der Summe von N_{\text{min}}, N_{\text{TM}}-Beisaat und N_{\text{TM}}-Triticale der Variante ’früh ohne Beisaat’ und Variante ’Beisaat Peluchke’ von 11kg N ha\(^{-1}\). Diese können als N\(_2\)-Fixierungsleitung der Peluschken interpretiert werden.

Auch im Herbst 2005 war der Unterschied im Trockenmasse-Stickstoff zwischen der späten und allen früh gesäten Varianten signifikant. Entsprechend der günstigeren Wuchsbedingungen war das Niveau der N-Aufnahme insgesamt höher als im Vorjahr. Während in 2004 der Aufwuchs der Frühsaat im Durchschnitt aller Varianten etwa 20 kg ha\(^{-1}\) (Abb. 10) mehr als die späte enthielt, waren es in 2005 etwa 30 kg ha\(^{-1}\) (Abb. 11).

Mit etwa 20 kg N ha\(^{-1}\) in der TM war die späte Saat im Herbst 2005 besser entwickelt als in 2004, was auch die Deckungsgraderhebungen deutlich zeigen. Die im Bodenprofil bis 60 cm Tiefe gefundenen Stickstoffmengen lagen 2004 mit 51 kg ha\(^{-1}\) (Tab. 21) deutlich höher als 2005 mit 24 kg ha\(^{-1}\).
Abb. 10: N-Mengen im Aufwuchs von Triticale und Beisaat sowie N_{min} von 0-60cm Anfang November 2004, Versuchsstandort Müncheberg. Unterschiedliche Buchstaben kennzeichnen statistisch signifikante Unterschiede ($\alpha=0,05$).

Abb. 11: N-Mengen im Aufwuchs von Triticale und Beisaat sowie N_{min} von 0-90cm Anfang November 2005, Versuchsstandort Müncheberg. Unterschiedliche Buchstaben kennzeichnen statistisch signifikante Unterschiede ($\alpha=0,05$).
Die sehr milde Witterung des Herbstes 2005 begünstigte wesentlich das Wachstum der Beisaaten, die im Mittel dreimal soviel N im oberirdischen Aufwuchs aufnehmen konnten wie im Herbst 2004 (11,2 zu 30,6 kg ha\(^{-1}\) im Mittel von Peluschke, Futtererbse und Sommerwicke).

Bei gleichen \(N_{\text{min}}\)-Werten und ähnlichen N-Mengen im Aufwuchs der Triticale konnten die Varianten ‘früh mit Sommerwicke’ und ‘früh mit Peluschke’ über 25 kg ha\(^{-1}\) mehr Stickstoff im oberirdischen Aufwuchs festlegen als die frühe Triticale ohne Beisaat (Abb.11). Die Variante ‘früh mit Beisaat Futtererbse’ fiel mit 18 kg mehr an Stickstoff etwas ab. Trotz Elektrozaun als Wildschutzmaßnahme wurde die blaue Lupine so stark durch Verbiss geschädigt, dass eine Bewertung dieser Beisaat auf Grundlage der Versuche in Müncheberg nicht möglich ist (siehe hierzu in Bewertung der Praxisrelevanz).

3.1.3.2 Entwicklung der Winterroggen-Bestände vor dem Winter

Weder für die Deckungsgrade noch für die Trockenmassen des Winterroggens lassen sich zwischen den früh gesäten Varianten Unterschiede vor Winter und damit Konkurrenzeffekte durch die Beisaaten feststellen (Tab. 22 u. 23). Noch stärker als bei Triticale blieb die späte Saatvariante in ihrer Entwicklung zurück und brachte es im Herbst 2004 nur auf etwa ein Viertel der Biomasse der frühen Saatvarianten. (Tab. 23). Wie bei Triticale fiel die
Verunkrautung in beiden Jahren so schwach aus, dass eine gesonderte Erfassung der Biomasse nicht möglich war.

Tab. 22: Deckungsgrade von Winterroggen, Beisaat und Unkräutern zu Beginn der Winterruhe in den Jahren 2004 und 2005, Versuchsstandort Müncheberg

<table>
<thead>
<tr>
<th>Boniturdatum</th>
<th>2.11.2004</th>
<th>23.10.2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>Kultur</td>
<td>Beisaat</td>
</tr>
<tr>
<td>ohne Beisaat, früh</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Blaue Lupine</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>Erbe</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>Peluschke</td>
<td>36</td>
<td>7</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>späte Saat</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 23: Aufwuchs von Winterroggen und Beisaat zu Beginn der Winterruhe in den Jahren 2004 und 2005, Versuchsstandort Müncheberg

<table>
<thead>
<tr>
<th>Probenahmedatum</th>
<th>2.11.2004</th>
<th>02.11.2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>Kultur</td>
<td>Beisaat</td>
</tr>
<tr>
<td>ohne Beisaat, früh</td>
<td>11,2 b</td>
<td>14,7 bc</td>
</tr>
<tr>
<td>Blaue Lupine</td>
<td>11,7 b</td>
<td>0,7 a</td>
</tr>
<tr>
<td>Erbe</td>
<td>10,4 b</td>
<td>1,1 ab</td>
</tr>
<tr>
<td>Peluschke</td>
<td>10,0 b</td>
<td>11,7 bc</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>13,1 b</td>
<td>0,7 a</td>
</tr>
<tr>
<td>späte Saat</td>
<td>5,1</td>
<td>1,6</td>
</tr>
</tbody>
</table>

In Abb. 12 sind die N-Mengen im Aufwuchs von Winterroggen, den Beisaaten und die \(N_{\text{min}}\)-Mengen im Boden von 0-60cm im Herbst 2004 dargestellt. Vor Winter nahm die Spätsaat deutlich weniger N als alle Frühsaatvarianten auf, was sich in den um 25 kg ha\(^{-1}\) höheren \(N_{\text{min}}\)-Werten (03. Nov.; 0-60 cm Bodentiefe) widerspiegelte. Wie schon bei Triticale zeigte sich auch bei Winterroggen, dass die aufgenommenen N-Mengen im Aufwuchs addiert mit dem \(N_{\text{min}}\)-Mengen im Profil bei Frühsaat ohne Beisaat und Spätsaat weitgehend identisch waren.

Die Beisaaten trugen zwischen 3 (Blaue Lupine und Sommerwicke) und 11 kg ha\(^{-1}\) (Peluschke) zum N-Mengen im oberirdischen Aufwuchs bei. Bei annähernd gleichen \(N_{\text{min}}\)-Mengen im Bodenprofil und \(N_{\text{TM}}\)-Mengen in Winterroggen über alle Frühsaatvarianten...
ergibt sich eine Differenz von 10 kg N ha\(^{-1}\) zwischen den Summen von \(N_{\text{min}}\), \(N_{\text{TM}}\) Beisaat und \(N_{\text{TM}}\) Triticale der Varianten ‘früh ohne Beisaat’ und ‘Beisaat Peluschke’. Dies ist ein Hinweis auf den positiven Beitrag, den die Peluschken durch die Fixierung von atmosphärischem Stickstoff im Herbst 2004 leisten konnten.

Abb. 12: N-Mengen im Aufwuchs von Winterroggen und Beisaat sowie \(N_{\text{min}}\) von 0-60 cm Anfang November 2004, Versuchsstandort Müncheberg. Unterschiedliche Buchstaben kennzeichnen statistisch signifikante Unterschiede (\(\alpha=0.05\))

Mit etwa 25 kg N-Aufnahme ha\(^{-1}\) war die späte Saat im Herbst 2005 besser entwickelt als 2004, wie auch die Deckungsgraderhebungen zeigen. Die im Bodenprofil bis 90 cm Tiefe gefundenen Stickstoffmengen lagen bei 40 kg ha\(^{-1}\). Die Verteilung des Stickstoffs auf die drei Bodenschichten zeigt, anders als bei Triticale in 2004 (Tab. 21), keine Konzentration des noch vorhandenen Stickstoffs in den tieferen Bodenschichten (Tab. 24), was auf die höhere N-Aufnahme des WRO zurückzuführen ist.

Abb. 13: N-Mengen im Aufwuchs von Winterroggen und Beisaat sowie N\(_{\text{min}}\) von 0-90cm Anfang November 2005, Versuchsstandort Müncheberg. Unterschiedliche Buchstaben kennzeichnen statistisch signifikante Unterschiede (\(\alpha=0,05\))

Tab. 24: N\(_{\text{min}}\)-Mengen im Boden in Schichten von 30cm, Mittelwerte der Parzellen mit spät gesätem Winterroggen Herbst 2004 und 2005, Versuchsstandort Müncheberg

<table>
<thead>
<tr>
<th>Probenahmedatum</th>
<th>0-30 cm</th>
<th>30-60 cm</th>
<th>60-90cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.11.2004</td>
<td>31,6</td>
<td>12,5</td>
<td>-</td>
</tr>
<tr>
<td>02.11.2005</td>
<td>19,4</td>
<td>15,5</td>
<td>6,5</td>
</tr>
</tbody>
</table>

Die wesentlich stärker entwickelten Beisaaten, aufgrund der günstigeren Witterung im Herbst 2005, konnten im Mittel fast fünfmal soviel N im oberirdischen Aufwuchs verglichen zum Herbst 2004 (6,2 zu 29,4 kg ha\(^{-1}\) im Mittel von Peluschke, Futtererbse und
Sommerwicke) festlegen und sich vom Niveau her auf einer vergleichbaren Höhe wie Triticale bewegen.

Bei nicht unterschiedlichen N_{min}-Werten und ähnlichen N-Mengen im Aufwuchs, konnten die Varianten mit Beisaaten, ausgenommen die Blaue Lupine, zwischen 13 und 26 kg ha$^{-1}$ mehr Stickstoff im oberirdischen Aufwuchs festlegen als die Variante ohne Beisaat und zwischen 39 und 52 kg ha$^{-1}$ (Abb. 12) mehr als die Spätsaat (Abb. 13).

3.1.3.3 Diskussion der Vorwinterentwicklung der Bestände

Hinsichtlich der Verwertung des im Boden vorhandenen mineralisierten Stickstoffs war die Frühsaat in der Vorwinterentwicklung der späten Saat deshalb auch deutlich überlegen.

Es kann davon ausgegangen werden, dass der bei der Spätsaat zu Winterbeginn noch im Boden vorhandenen N_{min}-Mengen nicht mehr aufgenommen werden kann und bis zum Frühjahr besonders auf leichten Sandböden durch Auswaschung verloren geht. Bei AZ 25 wird das durchwurzelbare Profil durch die mittleren Winterhalbjahresniederschläge von 225 mm kalkulatorisch mehr als viermal durchwaschen (Bachinger et al., 2003). In Hinblick auf eine optimale Aufnahme des im Herbst vorhandenen Stickstoffs ist eine frühe Saat sehr anzuraten. Auf die phytosanitären Effekte der Frühsaaten wird im folgenden Kapitel eingegangen.

Abb. 16: Spät- und Frühsaatvariante Winterroggen, 07. Okt. 2005, Versuchsstandort Müncheberg

3.1.3.4 Entwicklung der Triticalebestände bis zur Ernte

Abb. 18 zeigt die Deckungsgrade von Triticale, Beisaat und Unkraut vom 23.10.05 bis zum 27.06.06. Besonders zu beachten ist der Verlauf der Deckungsgradentwicklung der Beisaaten, deren abgefrorene Pflanzeanteile teilweise noch bis zum Ende des Frühjahrs vorhanden waren. Besonders die Peluschke bedeckte den Boden noch im Mai 06 mit bis zu 10% Flächenanteil. Die Zersetzung der Pflanzenresiduen verlief bei der Peluschke langsamer als bei der Sommerwicke, die im Herbst noch deutlich höhere Deckungsgrade erreichte hatte. Es war zu beobachten, dass die abgefrorenen Leguminosen zum Teil auch durch die winterliche Schneelast bedingt abknickten und über der Triticale zu liegen kamen und diese so in ihrer Entwicklung beeinträchtigten. Lediglich die Blaue Süßlupine blieb mit ihrem starken Stängel stehen.

Die Verunkrautung entwickelte sich in allen Varianten weitgehend ähnlich, wenn auch 2005 verglichen zu 2006 auf einem wesentlich höheren Niveau (Abb. 18; Tab 25). So ergaben sich keine signifikanten Unterschiede in den Deckungsgraden. Die zunehmende

Abb. 17: Triticale (früh, ohne US), 27. Feb. 2006, Versuchsstandort Müncheberg,
Abb. 18: Deckungsgrad (DG) von Triticale, Beisaat und Unkraut vom 6.4.07 bis zum 27.06.06, getrennt nach der Beisaat. Versuchsstandort Müncheberg

<table>
<thead>
<tr>
<th>Probenahmedatum</th>
<th>01.06.2005</th>
<th>01.06.2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kultur</td>
<td>Unkraut</td>
</tr>
<tr>
<td>ohne Beisaat, früh</td>
<td>41,9 ab</td>
<td>22,2 a</td>
</tr>
<tr>
<td>Blaue Lupine</td>
<td>47,5 b</td>
<td>21,2 a</td>
</tr>
<tr>
<td>Erbse</td>
<td>54,1 b</td>
<td>14,8 a</td>
</tr>
<tr>
<td>Peluschke</td>
<td>49,0 b</td>
<td>15,7 a</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>59,3 b</td>
<td>12,2 a</td>
</tr>
<tr>
<td>späte Saat</td>
<td>28,0 a</td>
<td>19,7 a</td>
</tr>
<tr>
<td>MSD ($\alpha = 0,05$)</td>
<td>18,5 n.s.</td>
<td>16,8</td>
</tr>
</tbody>
</table>

Der N$_{min}$-Gehalte im Boden nach Winter wurden 2006 am 7. April bestimmt. Die N$_{min}$-Werte bis 90 cm Tiefe sind in Abb. 19 wiedergegeben. Für die statistische Verrechnung wurden die N$_{min}$-Gesamtmengen im Profil (0-90cm) verwendet.

Die geringsten N-Mengen finden sich unter den Varianten „früh ohne US“ und „Blaue Lupine“, die höchsten bei der Variante „Peluschke“. Die Differenz zwischen der schlechtesten und der besten Variante beträgt allerdings nur 6 kg N ha$^{-1}$. In allen Fällen außer bei der

Abb. 19: \(N_{\text{min}}\)-Mengen im Boden unter Triticale am 07.04.06, Versuchsstandort Müncheberg. Unterschiedliche Buchstaben kennzeichnen stat. signifikante Unterschiede in den N-Mengen über alle Schichten (\(\alpha=0,05\))

3.1.3.5 Entwicklung der Winterroggen-Bestände bis zur Ernte

Abb. 21 zeigt die Deckungsgrade von Winterroggen, Beisaat und Unkraut vom 23.10.05 bis zum 23.05.06. Die Deckungsgradverläufe der Beisaaten gleichen denen des Triticale-Versuches, wenn auch auf etwas niedrigerem Niveau. Die Flächenanteile der Leguminosenresiduen erreichten Anfang Mai nur noch 3-5%. Das Unkraut konnte sich in allen Varianten ähnlich stark entwickeln. Signifikante Unterschiede in den Deckungsgraden ließen sich zwischen den einzelnen Varianten nicht beobachten. Die zunehmende, im Mai
verstärkt einsetzende Verunkrautung ging mit den abnehmenden Deckungsgraden des Winterroggens im Frühsommer einher.

Abb. 21: Deckungsgrad (DG) von Winterroggen, Beisaat und Unkraut 6.04. bis 23.05.06, Versuchsstandort Müncheberg

Wie schon bei Triticale waren auch die Stickstoffmengen im Unkrautaufwuchs im Jahr 2006 im Vergleich zu 2005 insgesamt wesentlich höher.

<table>
<thead>
<tr>
<th>Probenahmedatum</th>
<th>01.06.2005</th>
<th>01.06.2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>Kultur</td>
<td>Unkraut</td>
</tr>
<tr>
<td>ohne Beisaat, früh</td>
<td>54,4 ab</td>
<td>4,1 a</td>
</tr>
<tr>
<td>Blaue Lupine</td>
<td>53,6 ab</td>
<td>4,7 a</td>
</tr>
<tr>
<td>Erbse</td>
<td>59,1 b</td>
<td>5,1 a</td>
</tr>
<tr>
<td>Peluschke</td>
<td>55,7 ab</td>
<td>3,3 a</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>52,8 ab</td>
<td>3,3 a</td>
</tr>
<tr>
<td>späte Saat</td>
<td>40,0 a</td>
<td>7,4 a</td>
</tr>
<tr>
<td>MSD (α = 0,05)</td>
<td>18,32</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Der im Frühjahr im Bodenprofil enthaltene mineralisierte Stickstoff wurde 2006 am 7. April erfasst. Die N_{min}-Werte bis in 90 cm Tiefe sind in Abb. 22 wiedergegeben. Für die statistische Verrechnung wurden die Summenwerte der N_{min}-Mengen aller drei Bodenschichten bis 90cm herangezogen.

43
3.1.3.6 Diskussion der Nachwinter-Entwicklung der Bestände

Für die Beurteilung der Verfahren ergeben sich aus den vorliegenden Ergebnissen der Nachwinter-Entwicklung folgende wichtige Aspekte: Positiv zu bemerken ist, dass alle Körnerleguminosen in beiden Versuchsjahren sicher abfroren. So können gerade die Leguminosenbeisaaten mit den höchsten Stickstoffaufnahmefähigkeiten im Herbst die Hauptfrucht bis zum Frühjahr durch Überdecken in ihrer Überwinterung und anschließender Entwicklung beeinträchtigen. Dies kann sich gerade bei längerer Schneeüberdeckung deutlich negativ auf die Bestandesentwicklung auswirken. So wies z.B. die Beisaatvariante mit Peluschke die geringsten Deckungsgrade bei der Hauptfrucht auf (Abb. 21).

Unter diesem Gesichtspunkt wäre die Blaue Süßlupine zwar als Beisaat vorzuziehen, da sich die abgefrorene Biomasse nicht auf die Hauptfrucht ablagert, kann aber wegen der hohen Wildverbissgefahr nur sehr eingeschränkt empfohlen werden. Als Alternative bietet sich die blaue Bitterlupine an, die aber in der Regel in Ökoqualität und nach eigenen Erhebungen bei Saatguterzeugern bisher kaum verfügbar ist. Ackerbohne ist wegen der hohen TKM die teuerste Alternative, erbrachte aber im Rahmen der Praxisversuche in Bayern 2005 auf Betrieb 5 im Vergleich zur Nullvariante bei Winterroggen 10 dt ha⁻¹ Mehrertrag.
Bei der Triticale war nur die Variante 'früh mit Sommerwicke' in beiden Jahren in der von der Hauptfrucht aufgenommen Stickstoffmenge signifikant der Spätsaat überlegen (Tab. 25). Im Roggenversuch erbrachte allein die Beisaatvariante mit Futtererbsen zum Juni 2005 eine verglichen zur Spätsaat signifikant höhere N-Aufnahme im Roggenaufwuchs.

3.1.3.7 Ertrags- und Qualitätsparameter bei Triticale

Bei den Stroherträgen, die durch Quadratmeterschnitte erfasst wurden, war zu einer höheren Streuung führt, ergeben sich bei den Frühsaatvarianten ,ohne’, ,mit Sommerwicke’ und ,mit Erbse’ signifikante Mehrerträge im Vergleich zur Spätsaatvariante. Für das schlechtere Abschneiden der Beisaatvarianten ,blaue Lupine’ und ,Peluschke’ ergeben sich aus den Daten zur Bestandesentwicklung keine Erklärungen.

Die N-Mengen im Stroh waren 2005 mit durchschnittlich 16,6 kg ha⁻¹ etwas höher als 2006 (13,7 kg ha⁻¹). Bei der Tausendkornmasse (Tab. 28) ergaben sich keine signifikanten Unterschiede. Die Mittelwerte der TKM betrugen 2005 39,1g und 2006 35,6g.

<table>
<thead>
<tr>
<th>Erntedatum</th>
<th>2005</th>
<th>2006</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saatvariante</td>
<td>Korntr. dt ha⁻¹ (86% TS)</td>
<td>Strohtr. dt ha⁻¹ (TM)</td>
<td>Korntr. dt ha⁻¹ (86% TS)</td>
<td>Strohtr. dt ha⁻¹ (TM)</td>
</tr>
<tr>
<td>Blaue Lupine</td>
<td>30,1 b</td>
<td>35,3 ab</td>
<td>36,5</td>
<td>32,8 ab</td>
</tr>
<tr>
<td>Erbse</td>
<td>32,4 b</td>
<td>36,8 b</td>
<td>38,6</td>
<td>37,4 bc</td>
</tr>
<tr>
<td>Peluschke</td>
<td>32,2 b</td>
<td>34,7 ab</td>
<td>37,7</td>
<td>31,4 ab</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>32,5 b</td>
<td>36,4 ab</td>
<td>37,2</td>
<td>40,5 c</td>
</tr>
<tr>
<td>ohne Beisaat, früh</td>
<td>31,8 b</td>
<td>34,5 ab</td>
<td>39,8</td>
<td>39,8 c</td>
</tr>
<tr>
<td>späte Saat</td>
<td>22,9 a</td>
<td>29,5 a</td>
<td>30,1</td>
<td>30,8 a</td>
</tr>
<tr>
<td>HSD (α = 0,05)</td>
<td>5,4</td>
<td>7,1</td>
<td>n.s.</td>
<td>9,7</td>
</tr>
</tbody>
</table>

Tab. 28: Triticale; Rohprotein-Gehalte im Korn und TKM getrennt nach Beisaatvariante; Versuchsstandort Müncheberg.

<table>
<thead>
<tr>
<th>Erntejahr</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variante</td>
<td>Rohprot. [%]</td>
<td>TKM</td>
</tr>
<tr>
<td>Blaue Lupine</td>
<td>8,1 ab</td>
<td>38,5</td>
</tr>
<tr>
<td>Erbse</td>
<td>8,6 b</td>
<td>40,3</td>
</tr>
<tr>
<td>Peluschke</td>
<td>8,5 ab</td>
<td>41,8</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>8,3 ab</td>
<td>37,5</td>
</tr>
<tr>
<td>ohne Beisaat, früh</td>
<td>8,4 ab</td>
<td>39,0</td>
</tr>
<tr>
<td>späte Saat</td>
<td>8,0 a</td>
<td>37,3</td>
</tr>
<tr>
<td>HSD (α = 0,05)</td>
<td>0,63</td>
<td>n.s.</td>
</tr>
<tr>
<td>HSD (α = 0,1)</td>
<td>n.s.</td>
<td>3,86</td>
</tr>
</tbody>
</table>

3.1.3.8 Ertrags- und Qualitätsparameter bei Winterroggen

Die N-Mengen im Stroh waren 2005 mit durchschnittlich 16,5 kg ha⁻¹ anders als bei der Triticale etwas niedriger als in 2006 mit 17,9 kg ha⁻¹. Bei den Tausendkornmassen ergaben
sich keine signifikanten Unterschiede. Die Mittelwerte der TKM betrugen 2005 30,8 g und 2006 28,7 g.

<table>
<thead>
<tr>
<th>Erntejahr</th>
<th>Variante</th>
<th>Korntragen [dt ha⁻¹] (86% TS)</th>
<th>Strohtragen [dt TM ha⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Blaue Lupine</td>
<td>36,3 ab 38</td>
<td>43,3</td>
</tr>
<tr>
<td></td>
<td>Erbse</td>
<td>39,7 b 39,6</td>
<td>40,6</td>
</tr>
<tr>
<td></td>
<td>Peluschke</td>
<td>40,8 b 42,1</td>
<td>40,3</td>
</tr>
<tr>
<td></td>
<td>Sommerwicke</td>
<td>39,4 b 40,5</td>
<td>41,2</td>
</tr>
<tr>
<td></td>
<td>ohne Beisaat, früh</td>
<td>37,7 ab 39,2</td>
<td>37,8</td>
</tr>
<tr>
<td></td>
<td>späte Saat</td>
<td>31,6 a 39,5</td>
<td>33,3</td>
</tr>
</tbody>
</table>

HSD (α = 0,05) 7,1 n.s. n.s. 10,7

3.1.3.9 Diskussion der Ertragsparameter

<table>
<thead>
<tr>
<th>Erntejahr</th>
<th>Winterroggen</th>
<th>Triticale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variante</td>
<td>Korntragen [dt ha⁻¹] (86% TS)</td>
</tr>
<tr>
<td></td>
<td>früh, alle Varianten</td>
<td>38,8 b 39,9 a</td>
</tr>
<tr>
<td></td>
<td>späte Saat</td>
<td>31,6 a 39,5 a</td>
</tr>
</tbody>
</table>

erst eine noch spätere Saat (16. Okt.), die um 10 dt ha\(^{-1}\) abfiel. Die vergleichbaren Aussaat-

Demgegenüber zeigten die Praxisversuche in Bayern, wahrscheinlich bedingt durch einen deutlich stärkeren Auswuchs der Beisaaten bei nur geringer interspezifischer Wasser- und Nährstoffkonkurrenz zur Hauptfrucht, zum Teil erhebliche direkte Ertragseffekte von bis zu 10 dt ha\(^{-1}\).

Wie schon bei den Weizenversuchen ergaben sich aber sowohl bei den Praxis- als auch den Exaktversuchen 2006 deutlich geringere Ertragseffekte der Beisaaten, aber auch der Vorverlegung des Saattermins, bei allgemein deutlich höheren Erträgen. Die Ursache dafür sind die witterungsbedingten höheren Auswinterungsschäden der stark entwickelten Frühsaatbestände.
3.2 Anbauverfahren 2: Winterraps mit abfrierenden legumen Beisaaten

Im Rahmen des neu zu entwickelnden Anbauverfahren „Winterraps mit legumen Beisaaten“ war zu testen, in wie weit abfrierende legume Beisaaten sowohl eine unkrautunterdrückende Wirkung in der Wachstumsphase bis zur Winterruhe entfalten können, als auch dem Winterraps bereits kurz nach Vegetationsbeginn größere N-Mengen aus den abgefahrenen stickstoffreichen Pflanzenresiduen zur Verfügung stellen können.

3.2.1 Exaktversuche Müncheberg:

3.2.1.1 Biomasseentwicklung von Beisaat, Ackerbegleitflora und Hauptfrucht

Während die Versuche in Wilmersdorf (40 - 50 Bodenpunkte) in beiden Jahren, wenn auch mit teilweise erheblichen Einschränkungen, bis zur Ernte geführt werden konnten, war dies in Müncheberg, einem Grenzstandort für Winterraps im Ökologischen Landbau, in keinem der Versuchsringe möglich. Die fruchtfolgebedingt zur Verfügung stehenden Versuchsflächen hatten unter 30 Bodenpunkte. Durch die ungewöhnlich trockene und warme Herbstwinterung beider Jahre (siehe Bodenwassergehalte: Tab. 31) und die daraus resultierende geringe N-Mineralisation konnten sich die Bestände vor allem 2004 im Herbst anfangs nur schwer entwickeln, was zur Folge hatte, dass der Feldaufgang ungenügend erfolgte und infolgedessen sich eine starke Herbstverunkrautung ausbildete (Abb. 23, Abb. 24 und Tab. 32). Dies führte zusammen mit einer ausgeprägten Frühjahrstrockenheit dazu, dass sich 2005 keine pflanzenbaulich auswertbaren Bestände entwickeln konnten.

Die, bedingt durch die ungewöhnlich lange Vegetationsperiode, weit entwickelten Vorwinterbestände (Abb. 24 u. Abb. 25) des zweiten Versuchszeitraums wurden durch den nachfolgenden strengen Winter 2005/06 so stark geschädigt, dass sich wiederum keine beernzbaren Bestände entwickelten. Dennoch konnten beide Versuche wertvolle Informationen zur Vorwinterentwicklung der Mischbestände und zur \(N_{\text{min}} \)-Dynamik liefern.
Tab. 31: Wassergehalte der Bodenschichten [Masse %] von 0-90 cm Tiefe zum Zeitpunkt der Entnahme der \(N_{\text{man}} \)-Proben, Versuchsstandort Müncheberg

<table>
<thead>
<tr>
<th>Datum</th>
<th>0-30 cm</th>
<th>30-60 cm</th>
<th>60-90 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.04</td>
<td>7,8</td>
<td>5,9</td>
<td>6,9</td>
</tr>
<tr>
<td>4.11.04</td>
<td>8,7</td>
<td>5,7</td>
<td>-</td>
</tr>
<tr>
<td>26.10.05</td>
<td>11,1</td>
<td>5,6</td>
<td>6,9</td>
</tr>
<tr>
<td>10.4.06</td>
<td>11,4</td>
<td>11,3</td>
<td>11,9</td>
</tr>
</tbody>
</table>

Abb. 23: Bestandesentwicklung von Winterraps mit Beisaatvariante Erbse; starke Verunkrautung; 7.10.2004, Müncheberg

Die Aussaat der Versuche erfolgte 2004 am 20. August, 2005 am 19. August. Vorfrucht war in beiden Fällen Luzernkleegras. Die geringen Aufwuchsleistungen der blauen Lupine lagen sowohl 2004 (Abb. 24 und Tab. 32) als auch 2005 (Abb. 25 und Abb. 26) in einem starken Wildverbiss begründet, was sich auch bei den Beisaatversuchen mit Wintergetreide unter Praxisbedingungen als gravierendes Problem erwies. Wo die in den Exakt- und Praxisversuchen unternommenen Schutzmaßnahmen (Elektrischer Weidezaun) versagten, war zu beobachten, dass insbesondere durch Niederwild die blaue Lupine selektiv stark geschädigt wurden (Pflanzenverluste: blaue Lupine < 80%; Erbsen < 5%).
Tab. 32: Aufwuchs und Stickstoffmenge in TM von Raps, Leguminosen und Unkraut; Beprobungstermin: 04.11.2004; Müncheberg, 2004/05

<table>
<thead>
<tr>
<th>Beisaatvariante</th>
<th>Aufwuchs [TM dt ha⁻¹]</th>
<th>N-Mengen im Aufwuchs [kg N ha⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raps</td>
<td>Körnerlegum.</td>
</tr>
<tr>
<td>ohne</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>blaue Lupine</td>
<td>10</td>
<td>0,5</td>
</tr>
<tr>
<td>Erbse</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Abb. 24: Herbstentwicklung der Deckungsgrade und Bestandeshöhen von Winterraps, Beisaat, und Unkraut Rapsversuch in Müncheberg, 2004/05;

Die N-Gehalte vor Winter im Aufwuchs von Winterraps, Beisaaten und Unkraut des ersten Versuchsjahres sind in Tab. 32 und des zweiten in Abb. 25 wiedergegeben.

Erbse und vor allem der blauen Lupine konnten die Verunkrautung 2004 nicht erkennbar reduzieren, was sich sowohl in den Deckungsgraden (Abb. 24) als auch in den Aufwuchsen widerspiegelt (Tab. 32).

2005 erreichten Erbsen und Serradella signifikant höhere Stickstoffmengen im Aufwuchs als Blaue Lupine und Perserklee (Abb. 25: Blaue Lupine: 5,5; Erbse: 21,8; Perserklee 3,9 und Serradella 24,1 kg N ha\(^{-1}\)). Die Vorwinter-Stickstoffaufnahmen der Rapsbiomasse in der einzelnen Beisaatvarianten unterschieden sich in beiden Jahren nicht signifikant, erreichten aber 2005 mit durchschnittlich 49 kg N ha\(^{-1}\) insgesamt um 15 kg N ha\(^{-1}\) höhere N-Aufnahmen.

3.2.1.2 Einfluss der Beisaaten auf die N\(_{\text{min}}\)-Gehalte der Böden

Die nachweisbare N\(_{\text{min}}\)-Menge im Profil vor Winter war bei allen Beisaatvarianten annähernd gleich gering und lag 2004 etwas über 10 kg N ha\(^{-1}\) und 2005 unter 10 kg N ha\(^{-1}\). Dabei befand sich der größere Anteil noch innerhalb der Krume.

Im nachfolgenden Frühjahr 2006 weisen zu Anfang der Vegetationsperiode die Parzellen der Beisaatvariante Serradella verglichen zur Reinsaatvariante signifikant gering höhere N\(_{\text{min}}\)-Gehalte (< 10 kg ha\(^{-1}\)) im Oberboden auf. Zieht man die sehr ungünstige Trockenheit im Herbst 2005 (Abb. 4) dass die daraus resultierende geringen N-Aufnahme (Serradella: 23 kg N ha\(^{-1}\) Abb. 25) in Betracht, können diese gering höheren Werte durchaus als ein positiver Beitrag des Beisaatverfahrens zur N-Versorgung von Winterraps gewertet werden. So entsprechen 10 kg N ha\(^{-1}\) rein rechnerisch ca. 2 dt\(^{-1}\) ha Mehrertrag.

Dennoch muss auf Grundlage der Ergebnisse vom Standort Müncheberg davon ausgegangen werden, dass die Hauptrisiken des Rapsanbaus auf leichten Standorten a) Verunkrautungsgefahr und b) mangelhafte N-Versorgung auch mit Hilfe stark entwickelnder Leguminosenbeisaaten wie Serradella nur geringfügig reduziert werden können.
Abb. 27: N$_{\text{min}}$-Mengen im Boden unter Raps am 06.10.04 und am 04.11.04 unterschieden nach Beisaat, Versuchsstandort Müncheberg

Abb. 28: N$_{\text{min}}$-Mengen im Boden von 0-90 cm. Mittelwerte der Proben von Ende Oktober 2005 und Anfang April 2006, getrennt nach Art der Beisaat, Versuchsstandort Müncheberg. (Unterschiedliche Buchstaben kennzeichnen stat. signifikante Unterschiede in der Bodenschicht 0-30 cm am 10.04.06)
3.2.2 Praxisversuche

3.2.2.1 Biomasseentwicklung von Beisaat, Ackerbegleitflora und Hauptfrucht

Abb. 29: Winterraps-Beisaatenversuch Wilmersdorf, 26.10.04

Bedingt durch die außergewöhnlich milde Witterung im Herbst 2004 entwickelten sich die Erbsen und Lupinen auf den besseren Böden im Wilmersdorf so stark, dass der Raps in seiner Entwicklung behindert wurde und im Vergleich zur Variante ohne Beisaat signifikant geringere Pflanzenmasse ausbilden konnte (Tab. 33). Die N-Gehalte der oberirdischen Biomasse (Tab. 34) vom 8. Nov. 2004 belegen, dass die Körnerleguminosen beträchtliche N-Mengen bis Vegetationsende aufnehmen konnten, was aber konkurrenzbedingt zu geringeren N-Aufnahmen der Raspflanzen führte. Die signifikanten Unterschiede in den
N-Mengen im Unkrautaufwuchs der einzelnen Varianten (Tab. 34) sprechen für eine unkrautunterdrückende Wirkung der legumen Beisaaten.

Abb. 30: Deckungsgrade von Winterraps, Beisaat und Unkraut im Herbst, Wilmersdorf, 2004/05 und 2005/06

Abb. 31: Bestandeshöhen von Winterraps, Beisaat und Unkraut im Herbst, Wilmersdorf, 2004/05 und 2005/06
Zur Abschätzung der N2-Fixierung der Leguminosen wurde die Differenzmethode nach La Rue & Patterson (1981) modifiziert:

\[
N_{Fix} = N_{Leg} - (N_{Raps\ Reinsaat} + N_{Unkr\ Reinsaat} - N_{Raps\ Beisaat} - N_{Unkr\ Beisaat}) \quad [\text{kg N ha}^{-1}]
\]

\[N_{Leg}\] = Menge im Leguminosenaufwuchs; \[N_{Raps\ Reinsaat}\] = Menge im Rapsaufwuchs der Reinsaatvariante;
\[N_{Unkr\ Reinsaat}\] = Menge im Unkrautaufwuchs der Reinsaatvariante; \[N_{Raps\ Beisaat}\] = Menge im Rapsaufwuchs der Beisaatvariante; \[N_{Unkr\ Beisaat}\] = Menge im Unkrautaufwuchs der Beisaatvariante

Somit erreichte die Erbsenbeisaat eine Fixierungsleistung von 50 kg ha\(^{-1}\) und die durch Wildverbiss geschädigte Lupinenbeisaat nur etwa 20 kg ha\(^{-1}\) (Tab. 35).
Tab. 35: Stickstoffgehalte im Aufwuchs von Winterraps vom 08.11.2004 und 19.05.05; Abschätzung der N-Aufnahme von Raps nach Winter aus Leguminosenresiduen und Abschätzung der N-Fixierung der legumen Beisaaten; Versuchsstandort Wilmersdorf

<table>
<thead>
<tr>
<th>Beisaatvarianten</th>
<th>N-Mengen im Aufwuchs [kg N ha⁻¹]</th>
<th>N-Aufnahme nach Winter [kg N ha⁻¹]</th>
<th>Nfix ²) [kg N ha⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raps ohne</td>
<td>51,8</td>
<td>81,2</td>
<td>29,4</td>
</tr>
<tr>
<td>Raps + Erbse</td>
<td>24,4</td>
<td>75,9</td>
<td>51,5</td>
</tr>
<tr>
<td>Raps + Lupine</td>
<td>27,6</td>
<td>66,3</td>
<td>38,8</td>
</tr>
</tbody>
</table>

¹) Mehraufnahme von Winterraps mit legumer Beisaat im Vergleich zu Raps ohne
²) N₂-Fixierung nach Differenzmethode

Abb. 32: Winterraps-Beisaatenversuch Wilmersdorf, Beisaatvariante Erbse, 24.10.05

Neben der Herbstentwicklung verfiel auch die im Folgenden dargestellte Entwicklung von Kultur und Unkraut nach dem Abfrieren der Beisaat in den Wintermonaten in den beiden Versuchsjahren sehr unterschiedlich.

Im Winter 2004/2005 legten sich die abgefrorenen Erbsen auf die Rapsbestände, so dass in den Parzellen mit Erbsenbeisaat der Raps in seiner weiteren Entwicklung beeinträchtigt wurde. Die ebenfalls sicher abgefrorenen Lupinen blieben aber stehen und lagerten sich nicht wie die Erbsen. Somit wurde die weitere Entwicklung des Winterrapses unter den Lupinen wesentlich weniger stark gestört (Abb. 33).

erreichte der Deckungsgrad der Erbsenresiduen noch Mitte Mai 2005 30% bei N-Gehalten von 15 kg ha⁻¹.

Dennoch konnten die Rapspflanzen mit Erbsenbeisaat den vor Winter deutlichen Wachstumsrückstand bis zur Blüte etwas aufholen, was sich in der Differenz der N-Gehalte vom 8. Nov. und vom 19. Mai widerspiegelt (Tab. 35). Die Rapspflanzen nahmen aus dem Residual-N der Erbsen 22 kg mehr als die Reinsaatvariante auf, was aber nur etwa 25% des Biomasse-N der Erbsen vor Winter ausmacht. Die Reinsaatvariante erreichte bis zur Blüte die im Vergleich höchste N-Aufnahme, was zumindest teilweise den höchsten Korn ertrag bei der Reinsaatvariante erklärt (Abb. 36)

![Graph](image)

Abb. 34: Rapsversuch in Wilmersdorf, 2004/05; Frühjahrsentwicklung der Deckungsgrade und Bestandeshöhen von Hauptfrucht, Beisaat, und Unkraut

mit der frostbedingten hohen Bestandesheterogenität auf eine differenzierte Ertragserhebung verzichtet werden musste. Das Ertragsniveau des Gesamtschlages lag bei 4 - 5 dt ha⁻¹.

Abb. 35: Aufwuchs [dt TM ha⁻¹] von Raps, Unkraut und Leguminosenstroh zum Zeitpunkt der Rapsblüte am 19.05.05, Standort Wilmersdorf

Abb. 37: Winterraps am 11.04.2006, Parzelle mit Erbsen-Beisaat, Versuchsstandort Wilmersdorf,

Abb. 38: Deckungsgrade (DG) von Winterraps und Unkraut zu fünf Boniturzeitpunkten, Erntejahr 2006, getrennt nach Beisaat, Versuchsstandort Wilmersdorf
3.2.2.2 Einfluss der Beisaaten auf den Ertrag der Hauptkultur Winterraps

Abb. 39: Ertragskarte aus den beim Drusch erhobenen, DGPS-referenzierten Ertragsdaten, Erntejahr 2005, Standort Wilmersdorf (Längsparzellen 250 m)

Die ertragsreduzierende Wirkung vor allem der Erbsenuntersaat zeigte zum einen das Risiko dieses Anbauverfahrens zum anderen aber auch, dass selbst hohe Residualmengen bei trockener Frühjahrswitterung nur begrenzt zu einer bedarfsgerechten Versorgung des Winterraps betragen können. Nennenswerte Auswaschungsverluste während der Wintermonate 2004/05 sind auf Grund der Nₘᵦᵢᵦ-Gehalte vor bzw. nach Winter (Abb. 40) und der geringen Niederschläge in diesem Zeitraum nicht zu erwarten. Inwieweit gasförmige N-Verluste in Form von NH₃ oder N₂O aufraten, lässt sich nach dem heutigen Wissensstand nicht angeben. Weitere Versuche z. B. mit geringeren Saatstärken bei den Beisaaten sind notwendig um dieses Anbauverfahren weiterzuentwickeln bzw. in seiner Leistungsfähig-
keit in Hinblick auf N-Versorgung besser beurteilen zu können. Die eingesetzte Saattechnik konnte in beiden Jahren mit gleichmäßig hohen Feldaufgängen und guter Pflanzenverteilung von Hauptfrucht und Beisaat überzeugen.

Abb. 40: N$_{\text{min}}$-Mengen im Boden zu drei Terminen, Rapsversuch 2004/05; Standort Wilmersdorf
3.3 Anbauverfahren 3: Körnerleguminosen mit Gras- und Kleegrasuntersaaten

Im Rahmen der Vorversuche am Standort Müncheberg war eine Reduktion der Späverunkrautkraut vor und nach der Ernte beobachtet worden.

Im Folgenden werden die Ergebnisse aus den Gras- bzw. Weißkleegrasuntersaatversuchen getrennt nach Erbse und Lupine und nach Exakt- und Praxisversuchen dargestellt. Schwerpunkte bilden dabei der Einfluss der verschiedenen Untersaatvarianten auf die Beikrautentwicklung, auf die Bodennitratgehalte zur und nach der Ernte der Hauptfrüchte und auf die Ertragsentwicklung der Hauptfrüchte sowie der Folgefrucht Hafer.
3.3.1 Untersaatversuche Erbse (Exaktversuche)

3.3.1.1 Biomasseentwicklung von Untersaat-, Ackerbegleitflora und Hauptfrucht

Das für den Exaktversuch gewählte Untersaatverfahren, durchgeführt mit einer Drillmaschine unmittelbar im Anschluss an die Hauptfruchtaussaat, erbrachte eine relativ gleichmäßige Etablierung, wenn auch mit bis zur Ernte teilweise sehr geringen Deckungsgraden (Abb. 41 u. Abb. 43). Mit dem gleichem Aussaatverfahren wurden 2005 auf den Betrieben 4, 5 und 6 Praxisversuche mit Grasuntersaat in Erbsen angelegt. Allerdings wurden die Versuche auf Betrieb 4 durch trockenheitsbedingten weitgehenden Ertragsausfall (3 - 5 dt ha⁻¹) und auf Betrieb 5 und 6 durch zu starke Verunkrautung und dadurch notwendiges z. T. mehrmaliges Streigeln für eine Auswertung unbrauchbar. Am Standort Wilmersdorf wurden dagegen zu einem deutlich späteren Untersaattermin (ca. 5 Wo.) bei der letzten Striegelmaßnahme mit der vorhandenen Untersaattechnik (Exaktstreuer im Frontanbau und Hackstriegel, 18 m Arbeitsbreite) bei blauer Süßlupine Versuche durchgeführt.

Im Versuchsjahr 2004 konnte die Untersaat bis zur Ernte an keinem Boniturtermin einen Deckungsgrad von 10% überschreiten. (Abb. 41). Die Erbse bildete über alle Versuchsparzellen einen dichten, gut etablierten Bestand mit hoher Konkurrenzkraft und einem Deckungsgrad von nahezu 100%, was sich in Abb. 41 in dem Rückgang der Unkrautdeckungsgrade ab Ende Mai deutlich zeigt. Die Unkrautbedeckung des Bodens unter den Erbsen ohne Untersaat erreichte Mitte Mai zwar absolut mit 20% den höchsten Wert, lag jedoch im weiteren Vegetationsverlauf nur unwesentlich über den Untersaatvarianten.

Wie schon 2004 erreichte die Untersaat in den Erbsenversuchen auch 2005 und 2006 zu keinem der Boniturtermine einen Deckungsgrad von mehr als 10%, während die Unkräuter zum zweiten Boniturzeitpunkt bis an 40% DG heranreichen und dann ähnlich wie 2004 durch die fortschreitende Entwicklung der Erbsen zurückgedrängt wurden.

Die in 2006 witterungsbedingt deutlich frühere Abreife der Erbsen (Tab. 36) verursachte zusammen mit der bis zur Ernte anhaltenden ausgeprägten Trockenheit eine sehr zögerliche Entwicklung der Untersaaten. Diese konnten somit bis zur Ernte keinen Einfluss auf die Unkrautdeckungsgrade nehmen. Die Erfassung der Aufwuchsmengen von Ackerbegleitflora und Untersaat zum Erntetermin der Erbsen bestätigten die Boniturergebnisse der Bestandesentwicklung (Abb. 44). Im Versuchsjahr 2006 überstieg die Biomasse der Ackerbegleitflora die der Untersaat zur Erntetermine um ein Mehrfaches.

Bei insgesamt nur geringer Verunkrautung konnte 2004 eine leichte dennoch signifikante unkrautreduzierende Wirkung der Untersaaten bis zum Erntezeitpunkt festgestellt werden, was sich bei starker Verunkrautung 2005 nur andeutungsweise wiederholte (Abb. 44). Im Versuchsjahr 2004 war der Unkrautaufwuchs zur Ermittlung der Trockenmasse in den Parzellen mit Untersaat zu gering (< 3%). 2006 hingegen hatten die Untersaatgräser eine so zögerliche Entwicklung, dass keinerlei Beeinflussung der Unkrautentwicklung zu beobachten war (Abb. 43 u. Abb. 44).

Ausdauerndes Weidelgras erwies sich durchgehend als die starkwüchsigste Untersaatvariante mit im Vergleich zu Knaulgras deutlich gleichmäßigerer und intensiverer Bodenbedeckung und gleichzeitig zur Ernte günstig geringeren Pflanzenhöhen. Es erreichte in den beiden ersten Versuchsjahren bis zum Erntetermin eine Biomasseentwicklung von knapp 10 dt TM ha\(^{-1}\) mit einer oberirdischen N-Aufnahme von 20 kg N ha\(^{-1}\).

Nach Ernte der Hauptfrucht konnte in allen Jahren eine zügige Entwicklung der Grasuntersaat beobachtet werden. Nach 6 bis 8 Wochen erreichten die weitgehend unkrautfreien

![Biomasse und N-Mengen in Zwischenfrucht- bzw. Untersaatenaufwühse vom 14.12.2006 nach Erbse (N-Gehalt: α=0,05; HSD: 14,7 kg N ha\(^{-1}\))](image)

Abb. 45: Biomasse und N-Mengen in Zwischenfrucht- bzw. Untersaatenaufwühse vom 14.12.2006 nach Erbse (N-Gehalt: α=0,05; HSD: 14,7 kg N ha\(^{-1}\))

3.3.1.2 Einfluss der Untersaaten auf den Ertrag der Hauptkultur Erbse

Der Kornertrag der Hauptkultur bildet einen weiteren wichtigen Faktor zur Beurteilung des Verfahrens. Er ist neben der Qualität der Ernteprodukte und der Praktikabilität eines Verfahrens der primäre Maßstab für den Erfolg eines Anbauverfahrens. Abb. 47 zeigt die Erbsenerträge für alle Versuchsjahre getrennt nach den Untersaatvarianten. Wie schon erwähnt konnten 2005 aufgrund stärkerer Fraßschäden durch Blattrandkäfer nur drei Blöcke bis zur Ernte geführt werden. Signifikante Ertragsunterschiede zwischen den Varianten inklusive der Reinsaatvariante konnten auch beim Signifikanzniveau ($\alpha = 0.1$) nicht festgestellt werden. Somit kann auch für Trockenjahre die von Praktikerseite befürchtete Ertragsreduktion durch Untersaaten ausgeschlossen werden!

Tab. 36: Aussaat-, Blüte- und Erntetermine und Zeitspanne zwischen Aussaat und Ernte der Erbsenversuche 2004 bis 2006

<table>
<thead>
<tr>
<th>Versuchs-</th>
<th>Aussaat</th>
<th>BBCH 65</th>
<th>Ernte</th>
<th>Aussaat bis Ernte</th>
</tr>
</thead>
<tbody>
<tr>
<td>jahr</td>
<td></td>
<td></td>
<td></td>
<td>[Tage]</td>
</tr>
</tbody>
</table>

Abb. 47: Körnerträge der Erbse der Versuchsjaare 2004 bis 2006, der verschiedenen Untersaatvarianten

3.3.1.3 Einfluss der Untersaaten auf die N$_{\text{min}}$-Gehalte der Böden nach Erbsenernte

2004 konnte unmittelbar nach der Ernte keine signifikante Reduktion der N$_{\text{min}}$-Mengen durch Untersaaten gefunden werden (Abb. 48). Zu diesem Zeitpunkt befanden sich über 50 % des N$_{\text{min}}$-Gehaltes des Gesamtprofils von etwa 35 kg ha$^{-1}$ in der Bodenschicht 0 - 30 cm und über 80% in 0 - 60 cm, was für eine kurzfristige Freisetzung aus den Erbsen-Residuen spricht. Bereits am 2.September fand sich eine Halbierung der Werte auf 20 kg ha$^{-1}$ bei den Untersaatvarianten was eine deutliche Verminderung gegenüber den Reinsaatvarianten darstellt (Abb. 48). Die Verteilung der Gehalte im Profil zu beiden Termine lässt eine nennenswerte N-Verlagerung ausschließen (Abb. 48) und spricht für eine effektive Reduktion des NO$_3$-Verlagerungspotentials durch die Untersaaten. Diese signifikante Differenz zwischen den N$_{\text{min}}$-Werten zwischen Varianten mit und ohne Untersaat von 20 kg N ha$^{-1}$ ergibt zusammen mit den bereits zur Ernte aufgenommenen ca. 20 kg N ha$^{-1}$ zum 2. Sept. 2004 bereits eine N-Aufnahme durch die Weidelgrasvarianten von 40 kg N ha$^{-1}$.

Anfang August 2005 fanden sich in den oberen 60 cm nur geringe N$_{\text{min}}$-Mengen von im Mittel 15,5 kg N ha$^{-1}$ ohne signifikante Unterschiede zwischen den Varianten. Wie bereits
erwähnt, musste die gesamte Versuchsfläche wegen der teilweise durch den Blattrandkäferbefall stark geschädigten Bestände und infolgedessen starken Verunkrautung nach der Ernte umgebrochen werden. Somit konnte die N_{min}-Entwicklung nach der Ernte 2005 nicht verfolgt werden.

$$N_{\text{residual}} = N_{\text{Korn}} \times 0.25 + N_{\text{Stroh}}$$

Abb. 48: \(N_{\min}\)-Mengen im Boden an zwei Terminen 2004, unterschiedliche Buchstaben kennzeichnen stat. signifikante Unterschiede der Gehalte 0-90 cm (\(\alpha=0,05\); HSD: 15,5 kg N ha\(^{-1}\))

Abb. 49: \(N_{\min}\)-Mengen im Boden am 30.11.2006 nach Erbsen mit Untersaatvarianten und Winterrübsen als Stoppelsaat; unterschiedliche Buchstaben kennzeichnen stat. signifikante Unterschiede der Gehalte 0-60 cm (\(\alpha=0,05\); HSD: 4,3 kg N ha\(^{-1}\))
3.3.1.4 Einfluss der Untersaaten auf den Ertrag der Nachfrucht Hafer

\[\text{Abb. 50: Hafererträge nach Saatvarianten der Vorjahres-Erbsenversuche (2006: } \alpha = 0,05; \text{ HSD: 5,186\% TM)} \]
3.3.2 Untersaatversuche Lupine (Exakt- und Praxisversuche)

Die Versuchsflächen wurden durch den Käferanflug in besonderer Weise beeinträchtigt, da die Besiedelung von Kleinschlägen schnell abgeschlossen ist, zusätzlich wurde die Verbreitung der Insekten durch benachbarte Luzerne-Rotklee-Grasschläge (Fruchtfolgean-
teil im Modellbetrieb: 35%) begünstigt, die den Käfern als Rückzugs- und Überwinterrungsquartier dienen (Dickler, 2007).

Am Standort Wilmersdorf wurden Lupinenuntersaatversuche in Hinsicht auf die praktische Durchführbarkeit der Untersaatverfahren unter den Bedingungen eines vihlos wirtschaftenden ökologischen Großbetriebes als Langparzellenversuche integriert in Großschläge vereinfacht angelegt (siehe Material und Methoden).

Bei Untersuchungen des Blattrandkäferbefalls in den Praxisversuchen auf Gut Wilmersdorf wurden in 2005 und 2006 erst Ende Mai adulte Tiere und Larven mehrerer Sitona-Spezies gefunden, der Befall mit Imagines beschränkte sich aber in etwa 95% der untersuchten Pflanzen (n=50) auf das oberste Wurzelknöllchen. Es ist damit davon auszugehen, dass bei den Lupinen keine relevante Ertragsreduktion durch den Insektenbefall zu verzeichnen war.

3.3.2.1 Biomasseentwicklung von Hauptfrucht, Untersaat- und Ackerbegleitflora

Im Ersten Versuchsjahr 2004 kam es im Vergleich zur Erbse zu einer verspäteten Abreife der Lupine (Ernte 16.08.). Zudem handelte es sich bei der verwendeten Sorte 'Bora' um eine relativ kurzstänglige. Somit konnten sich sowohl die Untersaaten als auch die Unkrautflora bis zur Ernte stark entwickeln, was vor allem bei den Knaulgrasvarianten eine Beersntung mit dem Parzellenmährescher unmöglich machte (Abb. 52).

<table>
<thead>
<tr>
<th>Probenahme</th>
<th>Untersaat-Variante</th>
<th>Unkraut [dt TM ha⁻¹]</th>
<th>Untersaat [dt TM ha⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.06.2005</td>
<td>ohne</td>
<td>8,4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Knaulgras</td>
<td>7,4</td>
<td>1,2 a</td>
</tr>
<tr>
<td></td>
<td>Knaulgras/Weißklee</td>
<td>6,5</td>
<td>2,2 a</td>
</tr>
<tr>
<td></td>
<td>Weidelgras</td>
<td>8,6</td>
<td>4,6 b</td>
</tr>
<tr>
<td></td>
<td>Weidelgras/Weißklee</td>
<td>8,1</td>
<td>5,3 b</td>
</tr>
<tr>
<td>HSD (α=0.05)</td>
<td>n.s..</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>13.06.2006</td>
<td>ohne</td>
<td>15,2 b</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Härtlicher Schwingel</td>
<td>15,8 b</td>
<td>0,1 a</td>
</tr>
<tr>
<td></td>
<td>Härtlicher Schwingel/Weißklee</td>
<td>17,2 b</td>
<td>0,4 a</td>
</tr>
<tr>
<td></td>
<td>Weidelgras</td>
<td>11,9 ab</td>
<td>2,4 b</td>
</tr>
<tr>
<td></td>
<td>Weidelgras/Weißklee</td>
<td>9,1 a</td>
<td>2,8 b</td>
</tr>
<tr>
<td>HSD (α=0.05)</td>
<td>6,1</td>
<td>1,4</td>
<td></td>
</tr>
</tbody>
</table>

In beiden Versuchsjahren 2005 und 2006 war am Standort Wilmersdorf wie in Müncheberg nur 2004 bei weitgehend ungeschädigten Beständen die Untersaat zum Zeitpunkt der Blüte der Hauptfrucht für eine quantitative Bestimmung noch zu gering entwickelt. Ebenfalls nur gering entwickelt war auch Unkrautbiomasse (Abb. 54).

Tab. 38 Mittelwerte des Aufwuchses von Untersaat und Unkraut am 24.08.2005

<table>
<thead>
<tr>
<th>Untersaatvariante</th>
<th>Untersaataufwuchs, Mittelwert [dt TM ha⁻¹]</th>
<th>Unkrautaufwuchs, Mittelwert [dt TM ha⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne</td>
<td>-</td>
<td>3,6</td>
</tr>
<tr>
<td>WG</td>
<td>2,5</td>
<td>1,0</td>
</tr>
<tr>
<td>WG/WK</td>
<td>2,7</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Da 2006 nach der Lupinenernte zur Bekämpfung von Wurzelunkräutern eine wendende Bodenbearbeitung unumgänglich erschien, konnte 2006 keine Nachenernteentwicklung der bis zur Ernte noch nicht einmal aufgelaufenen Untersaaten verfolgt werden.

Abb. 56: Rübsen, Ausfalllupinen und Reste der Untersaat in Wilmersdorf, 19.10.05 (Foto: R. Schlepphorst)

3.3.2.2 Biomasseentwicklung von Hauptfrucht, Untersaat- und Ackerbegleitflora

Die mittels Probeschnitten erhobenen Erträge lagen im Mittel bei 28,5 dt ha\(^{-1}\) und damit deutlich über dem Sortenmittel in 2004 von 16,1 dt ha\(^{-1}\) der Brandenburger Landessortenversuche (LVLF, 2007). Die Erträge in Wilmersdorf lagen 2005 bei 32,7 dt ha\(^{-1}\) und 2006 bei 28,5 dt ha\(^{-1}\) (Abb. 57). Das Ertragsniveau der Lupine am Versuchsstandort Wilmersdorf kann im Vergleich zu den Ergebnissen von Sortenversuchen verschiedener deutscher Bundesländer und Jahre als durchschnittlich bis hoch bezeichnet werden (Hessisches
Dienstleistungszentrum für Landwirtschaft, 2003; Landesanstalt für Landwirtschaft und Gartenbau Sachsen-Anhalt, 2003; Meyercordt und Mücke, 2006).

Abb. 57: Lupinen-Körnertrag der Handernten vom 03.08.05 und 25.07.06 nach Faktorstufe Untersaat, gemittelt über beide Versuchsahre, Standort Wilmersdorf, (Fehlerbalken der Mittelwerte mit 95% Konfidenzintervall)

3.3.2.3 Einfluss der Untersaaten auf die N\textsubscript{min}-Gehalte der Böden nach Lupinenernte

Die N\textsubscript{min}-Gehalte im Boden zum Erntetermin des Exaktversuches (Abb. 58) lagen deutlich unter dem Erntewert bei der Erbse (Abb. 48), was durch die N-Aufnahme der Untersaat- und Unkrautbiomasse zu erklären ist. Der signifikant niedrigere N\textsubscript{min}-Wert in der Ackerkrume der Untersaatvarianten spricht dafür, dass die Gräser im Vergleich zur weitgehend seneszenten Unkrautflora durch Wiederaustrieb in der Lage waren, die durch hohe Niederschläge Ende Juli einsetzende N-Mineralisierung effektiv abzuschöpfen.

Auf den Versuchsflächen in Wilmersdorf fanden sich am 03.08.2005 bei den N\textsubscript{min}-Untersuchungen nur Bodenfeuchten zwischen 2,8 und 9,6 % H\textsubscript{2}O in Abhängigkeit der Bodentiefe. Somit waren einerseits die mikrobielle N-Mineralisierung und andererseits das Wachstum der Untersaat stark eingeschränkt.
Die N_{min}-Gehalte des Bodens im Jahr 2005 bis zu einer Tiefe von 60 cm zeigt die Abb. 59. Die erste Probennahme wurde zusammen mit der Ernte durchgeführt, der zweite Beprobung erfolgte zeitgleich mit dem Herbstschnitt der oberirdischen Biomasse, zu dem die Varianten Untersaat + Winterrübsen bzw. nur Winterrübsen bereits 30 kg ha$^{-1}$ aufgenommen hatten, was erklärt, dass sich auch zum zweiten Termin die N_{min}-Gehalte des Bodens nicht unterschieden.

Abb. 58: N_{min}-Mengen im Boden nach der Lupineernte 2004, der Fakturstufen Untersaat, Standort Müncheberg, Säulen mit unterschiedlichen Buchstaben unterscheiden sich stat. signifikant ($\alpha=0.05$; HSD 4,4 dt ha$^{-1}$)

3.3.2.4 Einfluss der Untersaaten auf den Ertrag der Folgekultur Hafer
Vegetationsende fast immer geschlossene Bestände und konnten bis zu 40 kg ha\(^{-1}\) N aufnehmen.

Grundsätzlich sind Untersaaten als Mittel zur Aufnahme von Nährstoffen aus Ernterückständen bzw. zur Verhinderung von Auswaschungsverlusten bereits vor der Ernte als geeignet anzusehen. Gruber et al. (2003b) nutzten erfolgreich Lupinen mit Welschem Weidelgras als Untersaat in einer sechsfeldrigen ökologischen Fruchtfolge und äußern sich positiv über die damit einhergehende verbesserte Stickstoffverwertung.

Abb. 60: Erträge der Folgefrucht Hafer nach Saatvarianten der Lupinenversuche (\(\alpha=0,05;\) 2005: HSD: 8,5 dt ha\(^{-1}\); 2006: HSD: 6,0 dt ha\(^{-1}\))
4. Zusammenfassende Bewertungen und Anbauempfehlungen

Bei der ökonomischen Bewertung der Verfahren können nur deren direkt monetarisierbaren Leistungen berücksichtigt werden. Insbesondere die Leistungen a) zum Bodenschutz durch die frühere Bodenbedeckung im Herbst und b) die verbesserte C- und N-Versorgung durch die Pflanzenresiduen (Wurzeln und oberirdische Ernterückstände der Kulturpflanzen), sowie c) die unkrautunterdrückende Wirkung der Verfahren müssen aber auch in Betracht gezogen werden.

4.1 Anbauverfahren 1: Wintergetreide mit abfrierenden Körnerleguminosen als Beisaaten

4.1.1 Pflanzenbauliche Bewertung

Bei dem Anbauverfahren 1 sind bei der Bewertung zum einen die beiden Hauptfaktoren a) Saatzeitvorverlegung und b) Körnerleguminosenuntersaaten und zum anderen die Getreidearten Winterweizen und Winterroggen/Triticale getrennt zu betrachten.

Der positive Ertragseffekt der Frühsaat bei Winterroggen und eingeschränkt bei Triticale kann für leichtere Standorte mit geringer witterungsbedingter Auswinterungsgefahr auf Grundlage von Literatur und vorliegenden Ergebnissen als weitgehend gesichert betrachtet werden. Bei Winterweizen können durch Frühsaat bei hoher Stickstoffversorgung und entsprechendem Schaderregeraufkommen gerade auf besseren Böden durchaus negative Ertragseffekte auftreten, was durch entsprechende Sortenwahl begegnet werden kann.
Zu den bisher nur im vorliegenden Projekt untersuchten Körnerleguminosenuntersaaten zeichnen sich folgende Tendenzen ab.

Die Praxisversuche in Bayern zeigten im Gegensatz zu Brandenburg zum Teil erhebliche direkte Ertragseffekte der legumen Beisaaten von bei Winterweizen bis zu 5 dt ha\(^{-1}\) und bei Winterroggen bis zu 10 dt ha\(^{-1}\). Diese regionalen Unterschiede sind durch eine deutlich bessere Biomasseentwicklung der Beisaaten bei nur geringer interspezifischer Wasser- und Nährstoffkonkurrenz zur Hauptfrucht bedingt, wobei bei Winterweizen allgemein nur eine Kompensation der saatzeitbedingten Mindererträge der Frühsaat durch die Beisaaten zu beobachten war. Die bei Weizen durch parasitäres Lager bedingten Mindererträge von Frühsaaten können durch Sorten aber auch Sortenmischungen mit höherer Standfestigkeit und verbesserter Krankheitstoleranz vermindert werden. Der bei Frühsaaten mehrfach beschriebene Verdünnungseffekt des Rohproteingehaltes und die damit verbundene verringerte Backfähigkeit kann durch gut entwickelte Körnerleguminosenuntersaaten beträchtlich kompensiert werden.

Schnellwüchsige Saatpartner, die nach dem Abfrieren entweder weitgehend stehen bleiben wie Lupine oder Ackerbohne, oder wie die feinblättrige Sommerwicke sich nicht mattenartig auf den Hauptfruchtbestand legen, sind zu bevorzugen. In Gegenden mit höherem Wildbesatz ist von blauer Süßlupine wegen der sehr starken Wildverbissgefahr abzuraten.

Frühsaattermine sollten, um eine ausreichende Biomasseentwicklung zu ermöglichen, in der 1. Septemberhälfte liegen.

Aussagen über mögliche negative phytosanitäre Fruchtfolgeeffekte der legumen Beisaaten auf Futter- und Körnerleguminosen als Hauptfrüchte können auf Grundlage des heutigen Wissens nicht getroffen werden. Dennoch sollten die potenziellen Gefahren für die Leguminosenhauptfrüchte durch steigende Leguminosenanteile in Fruchtfolgen durch legumen Zwischenfruchtanbau Inhalt zukünftiger Forschungen zu Anbausystemen im Ökologischen Landbau bilden.

4.1.2 Ökologische Bewertung

Frühsaaten können allgemein zum Ressourcenschutz beitragen. Im Gegensatz zu Winterroggen, der bis zu 80 kg N ha\(^{-1}\) vor Winter aufzunehmen vermag, ist Weizen nur in der Lage etwa die Hälfte aufzunehmen. Allgemein erreichen Frühsaaten ein deutlich verbesserter Erosionsschutz, bedingt durch die deutlich höheren und darüber hinaus schneller erreichten Bodenbedeckung. Bei Winterweizen, der kaum die 50 % Deckung bis Winter erreicht, die nach Frielinghaus et al. (1997) für einen effektiven Schutz vor Wassererosion notwendig sind, können legume Beisaaten dies im Verbund mit dem Weizen durchaus erreichen.

4.1.3 Ökonomische Bewertung

In Tab. 39 sind die im Exakt- und Praxisversuch im Wintergetreide eingesetzten Aussaatmengen und Saatgutkosten pro ha zusammengestellt. Je nach Beisaat werden die Verfahren mit 20 bis 60 € ha⁻¹ durch die Saatgutkosten belastet.

<table>
<thead>
<tr>
<th>Beisaat</th>
<th>Aussaatmenge [kg ha⁻¹]</th>
<th>Preis [€ dt⁻¹]</th>
<th>Aufwand [€ ha⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körnererbse</td>
<td>75</td>
<td>65</td>
<td>48,75</td>
</tr>
<tr>
<td>Peluschke</td>
<td>55</td>
<td>65</td>
<td>35,75</td>
</tr>
<tr>
<td>Ackerbohne</td>
<td>92</td>
<td>66</td>
<td>60,72</td>
</tr>
<tr>
<td>Sommerwicke</td>
<td>25</td>
<td>79</td>
<td>19,95</td>
</tr>
<tr>
<td>Blaue Süßlupine</td>
<td>75</td>
<td>76</td>
<td>57,00</td>
</tr>
</tbody>
</table>

4.2 Anbauverfahren 2: Winterraps mit abfrierenden legumen Beisaaten

4.2.1 Pflanzenbauliche Bewertung

Bei dem Anbauverfahren 2 können aus den zwei Versuchs­jahren noch keine Praxisempfehlungen abgeleitet werden. Dennoch konnte gezeigt werden, dass die legumen Beisaaten bedingt durch den früheren Saattermin von Winterrap im Vergleich zu den Wintergetreide deutlich mehr Biomasse mit N-Mengen bis 80 kg N ha⁻¹ vor Winter ausbilden können. Das im Vergleich zum Winterraps starke Biomassewachstum der Beisaat Erbse wurde 2004 durch die trockenheitsbedingte geringe N-Mineralisation aus den Pflanzenresiduen der Vorfrucht eines zweimal gemulchten Kleegrases hauptsächlich verursacht. Die Erbse als Leguminose war damit in ihrem Wachstum begünstigt und erreichte eine mit der Diffe-
renzmethode ermittelte N₂-Fixierungsleistung von etwa 50 kg ha⁻¹. 2005 kehrte sich dieser Effekt durch eine witterungsbedingt deutlich stärkere N-Mineralisation um.

Ab Winterbeginn 2004 wirkte es sich zusätzlich negativ auf die weitere Entwicklung des Rapsbestandes aus, dass sich der abgefrorene Erbsenaufwuchs flächig auf den Winterraps lagerte. Infolgedessen konnten weder die N-Aufnahme bis zur Blüte noch die Erträge von Winterraps ohne Beisaat erreicht werden.

Die Versuche zeigten zum einem das Ertragsrisiko dieses noch nicht praxisreifen Anbauverfahrens und zum anderen dass selbst hohe N-Residuamengen bei Frühjahrtrockenheit nur begrenzt zu einer bedarfsgerechten N-Versorgung des Winterraps beitragen können.

Wie schon beim Anbauverfahren 1 ist zu erwähnen dass über mögliche negative phytosanitäre Fruchtfolgeeinfüsse auf Futter- und Körnerleguminosen der legumen Beisaaten z. Z. keine Ergebnisse vorliegen und damit Inhalt zukünftiger Forschung sein sollte.

4.2.2 Ökologische Bewertung

Da bei Winterraps, bedingt durch die schnelle Pflanzenentwicklung im Herbst, während der Wintermonate weder ein erhöhtes N-Austragsrisiko noch ein Erosionsrisiko besteht, sind die legumen Beisaaten diesbezüglich als neutral zu bewerten. Zukünftige Forschungen haben abzuklären in wieweit klimarelevante gasförmige N-Verlusten aus den Pflanzenresiduen auftreten und in welchem Maße positive Einflüsse auf das Bodenleben sich ergeben.

4.2.3 Ökonomische Bewertung

<table>
<thead>
<tr>
<th>Frucht</th>
<th>Aussaatmenge</th>
<th>Preis [€/dt]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körnererbse</td>
<td>100 kg ha(^{-1})</td>
<td>65,00</td>
</tr>
<tr>
<td>Blaue Süßlupine</td>
<td>100 kg ha(^{-1})</td>
<td>76,00</td>
</tr>
</tbody>
</table>

4.3 Anbauverfahren 3: Körnerleguminosen mit Gras- und Kleegrasuntersaaten

4.3.1 Pflanzenbauliche Bewertung

Zielstellung dieser Verfahren war es, mit den Untersaatgen eine effektive Unkrautunterdrückung zu erreichen, sowie den bereits im Frühsommer mineralisierenden Stickstoff für die Folgefrucht zu erhalten. Alternativ zu dem untersuchten Verfahren werden nach Körnerleguminosen oftmals Winterrübsen als Zwischenfrucht eingesetzt.

Als Untersaatpartner hat sich deutsches Weidelgras am besten bewährt, da es schnellwüchsiger und trockenheitstolerant ist, einen gleichmäßigen Bestand bildet und, niedriger als Knaulgras bleibt. Möglichst spät blühende Sorten sind vorteilhaft.

Bei kurzstrohigen Sorten der blauen Süßlupine (Verzweigungstypen) besteht die Gefahr des Überwachsens mit nachfolgenden Beerntungsproblemen. Untersaat unmittelbar mit bzw. einige Tage nach der Aussaat der Hauptkultur bergen zudem die Gefahr von Verunkrautung und dem Verlust der Untersaat durch die dadurch notwendige mechanische Unkrautbekämpfung in sich.

Als günstigstes Untersaatverfahren gilt das Exaktverteilen durch Einstreuen mit anschließendem Einstriegeln (mit Technik zur Kleegrasuntersaat) im Entwicklungsstadium der Körnerleguminosen BBCH 13-19. Je niederschlagsärmer die Region und je schwerer der Boden desto früher sollte die Einsaat zur sicheren Bestandesetablierung erfolgen. Als Saatstärke genügt allgemein 8-10 kg ha\(^{-1}\).

Die Grasuntersaat leistet zwar einen Beitrag zur C- und N-Anreicherung, zeigte aber in den Exaktversuchen auf leichten zu Frühjahrstrockenheit neigenden Standorten einen im Vergleich zu Winterrübsen negativen Vorfruchteffekt bei Hafer bis zu 10 dt ha\(^{-1}\). Da die Pflanzenresiduen mit weitem C:N-Verhältnis keine schnelle N-Mineralisation, sondern u.

In keinem der Versuche konnte in den entsprechenden Varianten Weißklee als Mischungs-partner etabliert werden. Dies dürfte in niederschlagsreichen Regionen aber durchaus möglich sein und den Vorfruchteffekt verbessern.

4.3.2 Ökologische Bewertung

Unter dem Aspekt des Ressourcenschutzes bietet das Verfahren mit Grasuntersaat einen sicheren Schutz vor NO$_3$-Austrägen, aber auch vor Erosion, da keine Bodenbearbeitung im Sommer stattfindet und nach der Hauptfruchternte allgemein die schnellste und sicherste Bestandesentwicklung unter den möglichen Zwischenfruchtvarianten erzielt wird.

4.3.3 Ökonomische Bewertung

Die Erträge der Folgefrucht (in den untersuchten Fällen Hafer) müssen bei der Bewertung zusätzlich mit berücksichtigt werden. Sie lagen bei der Verwendung von Winterrüben als Zwischenfrucht signifikant um bis zu 10 dt ha$^{-1}$ höher als bei Grasuntersaaten. Zusammen mit den geringen Saatgutkosten (Tab. 41) ist die Variante Winterrüben aus ökonomischer Sicht zu bevorzugen.

<table>
<thead>
<tr>
<th>Untersaat/Zwischenfrucht</th>
<th>Aussaatmenge [kg ha$^{-1}$]</th>
<th>Preis [€ dt$^{-1}$]</th>
<th>Aufwand [€ ha$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsches Weidelgras</td>
<td>10</td>
<td>3,25</td>
<td>32,50</td>
</tr>
<tr>
<td>Knaulgras</td>
<td>10</td>
<td>3,96</td>
<td>39,60</td>
</tr>
<tr>
<td>Winterrübsen</td>
<td>16</td>
<td>1,4</td>
<td>23</td>
</tr>
</tbody>
</table>

92
5. **Zusammenfassung**

Im Rahmen des Projektes 'Neue Anbaustrategien zur Erhöhung der N-Effizienz und zur Reduzierung des Unkrautdrucks im Ökologischen Landbau' wurden Feldversuche in den Jahren 2004 bis 2006 durch die Projektpartner Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V. (Exaktversuche), Bioland Erzeugerring Bayern e. V. (Praxisversuche) und Gut Wilmersdorf GbR (Praxisversuche) durchgeführt. Drei Anbauverfahren mit Unter- bzw. Beisaaten wurden auf ihre Wirkungen auf a) den N-Haushalt, b) die Ertragsleistung von Haupt- bzw. Folgefrucht, c) die Unkrautentwicklung und d) Aspekte des abiotischen Ressourcenschutzes (N-Austrag, Bodenerosion) sowie e) ihre Praxisrelevanz untersucht:

Anbauverfahren 1: Wintergetreide mit abfrierenden Körnerleguminosen als Untersaaten

Anbauverfahren 2: Winterraps mit abfrierenden Körnerleguminosen

Anbauverfahren 3: Körnerleguminosen mit Gras- und Kleegrasuntersaaten

Bei dem **Anbauverfahren 1** sind die beiden Hauptfaktoren a) Saatzeitvorverlegung und b) Körnerleguminosenuntersaat getrennt zu betrachten. Der positive Ertragseffekt der Frühsaat bei Winterroggen und eingeschränkt bei Triticale konnte für leichtere Standorte in Brandenburg mit geringer Auswinterungsgefahr bestätigt werden. Frühsaat bei Winterweizen führten bei hoher Stickstoffversorgung sortenabhängig zu parasitärem Lager mit teils erheblichen Ertragseinbußen. Im Gegensatz zu Brandenburg zeigten die legumen Untersaatvarianten in Bayern, u.a. bedingt durch eine bessere Untersaatentwicklung, zum Teil erhebliche positive Ertragseffekte bei Winterweizen (bis zu 5dt ha$^{-1}$) und bei Winterroggen (bis zu 10 dt ha$^{-1}$). Durch die Untersaaten war bei Winterweizen im Vergleich zur späteren Normalsaat nur eine Kompensation der saatzeitbedingten Mindererträge der Frühsaat ohne Untersaaten zu beobachten.

In Anbauverfahren 1 und 2 eigneteten sich schnellwüchsige Saatpartner, wie Lupine oder Ackerbohne, besser, da diese nach dem Abfrieren entweder weitgehend stehen blieben oder, wie die feinblättrige Sommerwicke, sich nicht mattenartig auf den Hauptfruchtbestand legten. In Gegenden mit höherem Wildtierbesatz erwies sich die blaue Süßlupine wegen sehr starkem Wildverbiss als nicht geeignet.

Die nur in Brandenburg durchgeführten Versuche zu Anbauverfahren 3 bestätigten, dass Grasuntersaaten in Körnerleguminosen eine effektive Maßnahme zum Schutz vor N-Austrägen und Erosion nach Körnerleguminosen darstellen. Es zeigte sich auch eine deutlich unkrautunterdrückende Wirkung in der Nachernteperiode. Weißklee als Mischungspartner konnte nicht etabliert werden. Im Vergleich zu Winterrübsen-Stoppelsaat, die eine deutlich geringere Etablierungswahrscheinlichkeit bei Sommertrockenheit aufweist, wurden bei der Nachfrucht Hafer zum Teil deutliche Ertragseinbußen beobachtet. Es kann erwartet werden, dass eine Kombination beider Verfahren diese Gefahr deutlich reduziert.

Die durchschnittlichen Kosten der Verfahren sind stark abhängig von der Art des eingesetzten Saatgutes für die Untersaaten und dem Aufwand für die evtl. zusätzlich anfallende Arbeit. Sie belaufen sich auf 25-100 € pro Anbaujahr. Dem gegenüber stehen die potenziellen Mehrerträge und die Kostenersparnis durch die Reduzierung der Anzahl an Arbeitsgängen.
6. Abstract

In organic cropping systems nitrogen is the most limiting factor for plant growth, especially in cash crop systems. Beyond optimising the use of farmyard manure or of purchased organic fertiliser and reducing the nutrient competition by effective weed control, the optimisation of the N-supply aims at the reduction of nitrate leaching and the enhancement of N input through symbiotic nitrogen fixation of legumes.

In general, nitrate leaching can be reduced (i) by incorporation of undersown or stubble-seeded hardy catch crops into the cropping system and (ii) by modifying cropping methods like early sowing of winter cereals.

To increase the N-Input, legumes can be grown as sole crops or within mixed crops, or as inter-cropped or stubble-seeded catch crops.

Within the project ‘Novel cropping methods for increasing the N-efficiency and reducing the weedage in organic farming’, three novel cropping methods were developed and tested with respect to (i) N-supply, (ii) yield effects on the main crop and the following crop, (iii) weeds, (iv) environmental effects and (vi) practical relevance. From 2004 to 2006, field experiments were jointly carried out by the Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg (plot experiments), the Bioland producer association Bavaria e. V. (on-farm experiments), and the Manor Wilmersdorf GbR (on-farm experiments).

Cropping method 1: Mixed cropping of winter cereals with non-hardy grain legumes

Cropping method 2: Winter rape with inter-cropped non-hardy grain legumes

Cropping method 3: Grain legumes with undersown grass and clover-grass

In the case of cropping method 1, the two main characteristics (i) early sowing date and (ii) inter-cropped non-hardy grain legumes should be considered separately. The positive yield effects of early sowing dates in winter rye and triticale could be confirmed for sandy soils in the federal State of Brandenburg with low risk of winter killing. At high levels of N-supply, early sown winter wheat showed a cultivar-specific stem break with substantial yield losses, especially at one farm experiment in Bavaria.

In contrast to the farm experiments in Brandenburg, in Bavaria the winter cereal plots with different undersown grain legumes showed significant positive yield effects of 0.5 t ha\(^{-1}\) (winter wheat) to approx. 1 t ha\(^{-1}\) (winter rye), caused by increased biomass growth of the inter-cropped legumes in autumn. However, most of the inter-cropped legume crops in winter wheat could only compensate the negative yield effect of early sowing.

In 2004/2005, the experiments with cropping method 2 showed that pea inter-cropped in winter rape can result, in comparison to winter cereals, in a significant higher biomass production with N-contents of up to 80 kg N ha\(^{-1}\) before winter. About 50 kg N ha\(^{-1}\) of the
N-content was symbiotically fixed. However, the particularly intensive biomass growth of the inter-cropped pea in the first year led to a negative yield effect in rape caused by the inter-specific competition and the covering of the winter rape with the frozen off biomass of the pea plants. In 2005, the intercropped legumes were suppressed by a too far developed winter rape. In dry weather conditions as in spring 2005, even high amounts of legume residues were hardly able to contribute sufficiently to the N demand of the winter rape.

Intensive pest infestation in summer 2005 and frost killing in winter 2006 caused significant up to total yield losses in both years.

Winter rape and grain legumes were both well established using the new sowing technique for simultaneous drilling. This technique seems to be a promising tool for inter-cropping systems.

For **cropping methods 1 & 2** fast growing inter-crops like lupine or faba bean are most suitable because they remain upright when frozen off. Also common vetch was found to be suitable because the plant residues do not cover the main crop after freezing off. Especially in autumn, blue lupine showed an extremely high attraction for game, which caused considerable game damage and therefore is not suitable in regions with high game density.

The results with **cropping method 3** confirm that undersowing grass in grain legumes is an effective and reliable precaution method to avoid post-harvest nitrate leaching and soil erosion. Furthermore, a significant post-harvest weed suppression effect was found. But additionally undersown white clover could not be successfully established. Compared to stubble-seeded winter turnip rape, which showed a significantly lower establishment probability in case of summer drought, undersown grass as a catch crop induced significant yield losses in oat as the following crop. The combination of both, as done in one farm experiment, can be expected to reduce yield losses.

The average costs of the different cropping methods depend mainly on cost of the inter-cropped legume species and the additional work necessary for preparing seed mixtures. They differ from 25 to 100 € ha⁻¹ y⁻¹. This is partly compensated by increased yields and cost savings through the omission of single work steps like the post-emergence weed harrowing in cropping method 3.
7. Literaturverzeichnis

Sächsische Landesanstalt für Landwirtschaft (Hrsg), Öko-Sortenempfehlungen 2007 – Winterweizen. 2007. In:

