1	Type of contribution:	Regular paper	
2	Date of preparation:	5 March 2007	
3	Number of text pages:	31	
4	Number of tables:	5	
5	Number of figures:	5	
6	Instructions to the printer:	Figures 1, 3 and 5 are designed to cover two columns	
7			
8			
9			
10	Contribution of nitrification	on and denitrification to N_2O emissions from urine	
11	patches		
12			
13	Mette S. Carter		
14			
15	Biosystems Department, Ris	sø National Laboratory, Technical University of Denmark,	
16	P.O. Box 49, DK-4000 Roskilde, Denmark		
17	Tel.: +45 4677 4238; fax: +4	45 4677 4160; e-mail: mette.sustmann.carter@risoe.dk	
18			
19			
20			
21	Prepared for submission to:	Soil Biology & Biochemistry	

22 Abstract

Urine deposition by grazing livestock causes an immediate increase in nitrous oxide 23 24 (N₂O) emissions, but the responsible mechanisms are not well understood. A nitrogen-15 (¹⁵N) labelling study was conducted in an organic grass-clover sward to examine the 25 initial effect of urine on the rates and N₂O loss ratio of nitrification (*i.e.* moles of N₂O-N 26 27 produced per moles of nitrate produced) and denitrification (i.e. moles of N₂O produced per moles of $N_2O + N_2$ produced). The effect of artificial urine (52.9 g N m⁻²) and 28 ammonium solution (52.9 g N m⁻²) was examined in separate experiments at 45 and 29 35% water-filled pore space (WFPS), respectively, and in each experiment a water 30 31 control was included. The N₂O loss derived from nitrification or denitrification was determined in the field immediately after application of ¹⁵N-labelled solutions. During 32 33 the next 24 h, gross nitrification rates were measured in the field, whereas the denitrification rates were measured in soil cores in the laboratory. Compared with the 34 water control, urine application increased the N₂O emission from 3.9 to 42.3 µg N₂O-N 35 $m^{-2} h^{-1}$, whereas application of ammonium increased the emission from 0.9 to 6.1 µg 36 N₂O-N m⁻² h⁻¹. In the urine-affected soil, nitrification and denitrification contributed 37 equally to the N₂O emission, and the increased N₂O loss resulted from a combination of 38 higher rates and higher N₂O loss ratios of the processes. In the present study, an 39 40 enhanced nitrification rate seemed to be the most important factor explaining the high initial N₂O emission from urine patches deposited on well-aerated soils. 41

42

43 Keywords

44 Denitrification; Grass-clover; Grassland; Gross nitrification; Loss ratio; ¹⁵N; Nitrous
45 oxide; pH; Urine

1. Introduction

48	Grazed grasslands cover about 40% of the agricultural area in Europe (FAO,
49	2004), and urine deposited by grazing livestock has a large impact on the emission of
50	nitrous oxide (N_2O) from these soils. Nitrous oxide is a well recognized greenhouse gas.
51	Agricultural soils contribute approximately 50% of the World's anthropogenic N_2O
52	emissions (IPCC, 2001) and currently this source of N_2O represents 2.4% of the
53	European release of anthropogenic derived greenhouse gasses (EEA, 2006).
54	Furthermore, N ₂ O is involved in the depletion of the stratospheric ozone layer (Crutzen,
55	1981).
56	Nitrous oxide is mainly produced by nitrifying and denitrifying bacteria in the
57	soil (Wrage et al., 2001) and the N_2O emission usually increases immediately after urine
58	deposition (e.g. Allen et al., 1996; Koops et al., 1997; Yamulki et al., 1998). Williams et
59	al. (1999) estimated that N_2O losses within the first 24 h after urine deposition
60	accounted for approximately 8% of the annual N_2O emission from a grassland.
61	The mechanisms responsible for the high N_2O loss from urine patches are not
62	well understood and may vary according to abiotic factors, e.g. soil type, moisture, pH
63	(Clough et al., 1998, 2004) and the amount of urine-nitrogen (N) deposited (Petersen et
64	al., 2004). It is well-known that soil pH rises temporarily following urine deposition
65	because alkaline products are formed during the rapid enzymatic hydrolysis of urea,
66	which is expressed as
67	
68	$(\mathrm{NH}_2)_2\mathrm{CO} + 3 \mathrm{H}_2\mathrm{O} \rightarrow 2 \mathrm{NH}_4^+ + \mathrm{OH}^- + \mathrm{HCO}_3^- $ (1)

70 The raised pH in the urine-affected soil shifts the equilibrium between ammonium 71 (NH_4^+) and dissolved ammonia $(NH_{3(aq)})$ towards $NH_{3(aq)}$ (Schmidt, 1982), which at high 72 concentrations inhibits microbial activity. Sherlock and Goh (1983) applied urine, urea and ammonium corresponding to 20 g N m⁻² dissolved in similar volumes of liquid and 73 found that urine gave rise to the largest N₂O emission, especially immediately after 74 75 application. Thus, elevated soil water content and availability of inorganic N only 76 explain part of the urine-induced N₂O emission. Urine contains hippuric acid, which is 77 known to accelerate the hydrolysis of urea and thereby also the formation of $NH_{3(aq)}$ (Whitehead et al., 1989). The findings of Sherlock and Goh (1983) could indicate that 78 the NH_{3(aq)} concentration in the soil solution plays an important roll for the initial N₂O 79 80 production in urine patches.

The N₂O loss via nitrification and denitrification is influenced by four parameters (Firestone and Davidson, 1989; Granli and Bøckmann, 1994). These are the rate of gross nitrification (\underline{N}) and denitrification (\underline{D}), the N₂O loss ratio of nitrification, <u>*i.e.*</u> moles of N₂O-N lost per moles of nitrate (NO₃⁻) produced (\underline{L}_N) and the N₂O loss ratio of denitrification, <u>*i.e.*</u> moles of N₂O lost per moles of N₂ + N₂O produced (\underline{L}_D). Thus, the total loss of N₂O from nitrification and denitrification (\underline{E}) can be described as

88
$$\underline{E} = \underline{N} \times \underline{L}_{\underline{N}} + \underline{D} \times \underline{L}_{\underline{D}}$$
(2)

89

Any particular environmental factor may affect the four parameters differently. In urine patches, the rate of nitrification (*N*) may be stimulated by the enhanced availability of the substrate, NH₄⁺. However, as nitrite (NO₂⁻) oxidation is more readily inhibited by NH_{3(a0)} than the NH₄⁺ oxidation (Harada and Kai, 1968), the N₂O formation

may rise due to chemical decomposition of NO2⁻ or reduction of NO2⁻ via nitrifier 94 denitrification (Wrage et al., 2001, 2004b). Thus, the first hypothesis is that in urine-95 96 affected soil the N₂O loss from nitrification will increase mainly as a result of an 97 increase in the N₂O loss ratio of the process (\underline{L}_N). 98 The rate of denitrification (D) in urine-affected soil may be stimulated by a 99 urine-induced rise in dissolved organic carbon (DOC), either via solubilization of soil 100 organic carbon (C), or because labile compounds are released from scorched plant roots 101 (Monaghan and Barraclough, 1993). However, the N₂O loss ratio of denitrification (L_D) 102 decreases when pH increases and when the NO₃⁻/labile C ratio decreases (Hutchinson 103 and Davidson, 1993; Simek and Cooper, 2002), *i.e.* denitrification is more complete 104 with more N₂O reduction. Thus, the second hypothesis is that in urine-affected soil the N₂O loss from denitrification will increase due to an increase in the rate of the process 105 106 (<u>D</u>). 107 The objective of the present study was to investigate the mechanisms involved 108 in the initial N₂O production following urine deposition. More specifically, the 109 objective was to assess changes in the four parameters that influence the N₂O production (viz. N, D, L_N and L_D) in urine patches deposited on a sward having 110 111 intermediate soil water content (about 45% water-filled pore space, WFPS). Artificial urine (52.9 g N m⁻²) was used and a water treatment was included as control. In 112 113 addition, an experiment with an ammonium solution and water was conducted at lower soil water content (about 35% WFPS) to study the effect of soil moisture on the four 114 parameters. The nitrogen-15 (¹⁵N) labelling and acetylene inhibition techniques were 115 used to quantify the parameters. Separate labelling of the NH_4^+ and NO_3^- pools with ^{15}N 116 has been used frequently to assess the contribution of nitrification and denitrification to 117

the N₂O production in soil, but was only involved in a few studies on urine-affected soil
(e.g. Monaghan and Barraclough, 1993).

120

- 121 **2. Materials and methods**
- 122

123 2.1. Field site

124 The study was conducted in a sward consisting of white clover (Trifolium repens 125 L.), red clover (*Trifolium praténse* L.) and perennial ryegrass (*Lolium perenne* L.) 126 during the second production year. The grass-clover sward was part of an organic crop 127 rotation, which represented a dairy system, and was situated in Taastrup, 18 km west of 128 Copenhagen (55° 40'N, 12° 18'E). The soil was a loamy sand with a total N content of 129 0.21%, total C content of 2.1% and pH in water of 7.9. Microplots were established in December 2002 by pushing 56 PVC cylinders (30 cm i.d. by 30 cm long) into the soil to 130 131 a depth of approximately 22.5 cm. Grazing was simulated during the summer of 2003 by regularly mowing the sward to 15 cm high. Soil temperature at a depth of 10 cm was 132 133 registered continuously and measurements of daily rainfall were obtained from a local meteorological station (CWB, 2003). 134 The effect of ammonium $(52.9 \text{ g N m}^{-2})$ on the nitrification and denitrification 135

135 The effect of ammonium (52.9 g N m⁻) on the hitrification and denitrification 136 processes was examined in the first experiment, which took place from 26 to 30 August 137 2003. Two weeks later, the effect of artificial urine (52.9 g N m⁻²) on the processes was 138 assessed in the second experiment. In each experiment, a set of 28 microplots was used. 139

140 2.2. Solutions for ¹⁵N field measurements

141	Nitrogen-15 techniques were used in the field to determine the rate of gross	
142	nitrification and the amount of N_2O produced via nitrification or denitrification. Five	
143	solutions were prepared for the first experiment, <u><i>viz.</i></u> water only, water/ $^{15}NH_4^+$,	
144	water/ $^{15}NO_3^{-}$, ammonium/ $^{15}NH_4^{+}$ and ammonium/ $^{15}NO_3^{-}$. The total N concentrations of	
145	the ammonium and water solutions were 15.6 g N l^{-1} and ≤ 0.02 g N l^{-1} , respectively. In	
146	the second experiment, ammonium in the solutions was replaced by artificial urine	
147	consisting of urea (28.5 g l^{-1}), hippuric acid (11.9 g l^{-1}), creatinine (0.3 g l^{-1}), allantoin	
148	$(0.6 \text{ g } \text{ l}^{-1})$, uric acid $(0.2 \text{ g } \text{ l}^{-1})$, NH ₄ Cl $(1.4 \text{ g } \text{ l}^{-1})$, KHCO ₃ $(22.9 \text{ g } \text{ l}^{-1})$ and KCl $(16.9 \text{ g } \text{ l}^{-1})$	
149	(De Klein and Van Logtestijn, 1994), giving a total N concentration in the solutions of	
150	15.6 g N l ⁻¹ . Details of the content, ¹⁵ N labelling, total N concentration and specific	
151	purpose of each of the solutions are given in Table 1.	Table 1

- 152
- 153 *2.3*.

2.3. ¹⁵N field measurements

For practical reasons, the two 15 NH₄⁺ labelled solutions were applied on day 1 of each experiment (*viz.* 26 August and 9 September), whereas the remaining three solutions were applied the following day. More specifically, 240 ml of each solution was carefully applied on the soil surface in four microplots using a 60 ml Plastikpak syringe fitted with a veterinary injection needle. Subsequently, 180 ml distilled water was added using the same technique, which altogether resulted in a mean penetration depth of about 2 cm.

Measurement of N₂O emission by a static chamber method was initiated within 2.5 h of solution application. Briefly, each microplot was sealed with a PVC lid (5 cm inner height) fitted with a rubber septa to allow gas sampling. The lid had an EPDM

164 (Ethylene Propylene Diene Monomer) rubber gasket on the sealing edge and was 165 weighed down to ensure a complete seal. For analysis of initial N₂O concentration and 166 ¹⁵N enrichment, three 3.5 ml N₂-flushed Venoject vials and three evacuated 120 ml 167 serum bottles were filled with samples of ambient air using a 60 ml syringe. After 50, 168 100 and 150 min of cover period, a sample of the headspace gas was taken with a 169 syringe through the rubber septa and stored in a 3.5 ml vial for later analysis of N₂O 170 concentration. At the end of the cover period (150 min), a 120 ml sample was taken to determine the ¹⁵N enrichment of N₂O. 171 172 Following gas sampling a soil sample, consisting of four soil cores (0-10 cm

with ¹⁵NO₃⁻, the sampling holes were closed with 50 ml screw capped test tubes to
prevent aeration of the soil and drainage of water. After about 24 h, soil sampling was
repeated in these microplots to determine the rate of gross nitrification via ¹⁵NO₃⁻ pool
dilution.

depth, 2 cm diameter) was collected from each microplot. In the microplots labelled

178

173

179 2.4. Analysis of gas samples from the field

The 3.5 ml gas samples were pressurized by adding 2 ml N₂ before they were 180 181 analysed for N₂O in a gas chromatograph (GC-14B, Shimadzu, Kyoto, JP) fitted with a 182 HaySep Q column (100-120 mesh) and an electron capture detector (column and 183 detector temperature were 30 °C and 300 °C, respectively). The 120 ml samples were analysed for ¹⁵N enrichment of N₂O following removal of H₂O and CO₂ as well as 184 cryogenic focusing of N₂O on a trace gas concentration unit (PreCon, Thermo 185 186 Corporation, Bremen, DE) coupled in continuous flow mode to an isotope-ratio mass 187 spectrometer (IRMS; Finnigan MAT Delta Plus, Bremen, DE).

189 2.5. Soil analyses

Coarse roots and pebbles (> 4 mm) were removed by tweezers. Within 7 h of soil sampling, 20 g portions of each 'root free' soil sample were extracted in 1 M KCl (1:5, w:vol), stirred on a horizontal shaker for 1 h at 140 rpm. The extracts were filtered through Whatman 40 filters and kept at -20 °C until further analysis.

Dissolved organic carbon in the extracts from ¹⁵NO₃⁻ labelled microplots was 194 195 measured on a TOC-5000A total organic C analyzer (Shimadzu, Kyoto, JP). The content of NH_4^+ , NO_3^- and NO_2^- in extracts were analysed colorimetrically on an 196 autoanalyzer (Bran+Luebbe, Norderstedt, DE). Nitrogen-15 enrichment of NH_4^+ and 197 NO₃⁻ were determined in extracts by the diffusion method (Sørensen and Jensen, 1991). 198 Briefly, NH₄⁺ in the extract was converted into NH₃, which was trapped on an acidified 199 200 filter paper. Subsequently, NO_3^- was converted via NH_4^+ into NH_3 , which was trapped on another filter. The filters were analysed for ¹⁵N using an elemental analyser (EA 201 202 1110, Carlo Erba, Milano, IT) coupled in continuous flow mode to the IRMS. Some carry-over of NH₄⁺ was detected on the NO₃⁻ filters from the ammonium and urine 203 204 treatments, which was corrected for via the autoanalyzer measurements.

Soil pH was determined in a 10:25 (w:vol) suspension of fresh soil in distilled water using soil sampled on day 3 of each experiment. Samples of air-dried soil from the water-only treatment in the first experiment were finely ground and analysed for total C and total N on the elemental analyser.

210 2.6. Acetylene inhibition technique

The rate of denitrification was determined on soil cores in the laboratory using acetylene (C_2H_2) inhibition of the bacterial reduction of N_2O to N_2 (Ryden et al., 1987). On day 4 of the experiments, unlabelled solutions of water and ammonium or urine were applied to microplots replicated four times, using the same technique as described above. From each microplot, four soil cores were then collected avoiding plants, in PVC tubes of 10 cm by 4.4 cm inner diameter. The tubes were sealed at the bottom and brought to the laboratory.

218 Incubation with C₂H₂ was initiated using two soil cores from each microplot. 219 Thus, 4 ml C₂H₂ (acetone free, AGA A/S, Copenhagen, DK) was injected along the 220 length of each core using a veterinary needle connected to a 5 ml syringe and a C_2H_2 221 reservoir via a three-way valve (Ambus and Christensen, 1993). The two cores were 222 placed in a 2 litre glass jar, which was closed with a rubber-sealed lid fixed with 223 clamps. A volume (180 ml) of headspace air was extracted from the jar and then 224 replaced with 180 ml of C₂H₂ using 60 ml syringes and a rubber septa mounted in the 225 lid of the jar. The resulting C₂H₂ concentration in soil and headspace atmosphere was 226 9%, which inhibits nitrification and is above the 5% needed to block the reduction of N₂O to N₂ (Okereke, 1984). Subsequently, control incubations were initiated on the 227 228 other two soil cores, using pure N₂ instead of C₂H₂. The glass jars were then incubated 229 at 15°C. After 2, 5 and 20 h of incubation, a 30 ml sample of headspace gas was taken 230 through the rubber septa and transferred to a 3.5 ml N₂-flushed Venoject vial using a 231 syringe. A volume of 30 ml N₂ was added to the jar before each gas sampling to 232 maintain atmospheric pressure. Soil dry matter was determined after the last gas 233 sampling (oven drying at 105 °C for 24 h).

234	The 3.5 ml gas samples had 2 ml of N_2 added before they were analysed for N_2O
235	in a gas chromatograph (Chrompack-9001, Chrompack, Middelburg, NL) fitted with
236	two HayeSep Q columns (60-80 and 80-100 mesh, respectively) and an electron capture
237	detector (column and detector temperature were 60 °C and 325 °C, respectively).
238	
239	2.7. Calculations and statistics
240	Fluxes of N_2O in the field and laboratory were calculated from the increase in
241	N ₂ O concentration in the headspace during the incubation periods. The rate of
242	denitrification in the 0-10 cm soil layer was established from the N_2O -N formation in
243	the glass jars with C_2H_2 .
244	When significant N ₂ O emission was detected from the microplots (<i>i.e.</i> R^2 of
245	N ₂ O concentration vs. time \geq 0.65), then the ¹⁵ N enrichment of the emitted N ₂ O (\underline{C}^*)
246	could be determined as
247	
248	$\underline{C}^* = (\underline{C}_{\underline{l}} \underline{C}_{\underline{l}}^* - \underline{C}_{\underline{0}} \underline{C}_{\underline{0}}^*) / (\underline{C}_{\underline{l}} - \underline{C}_{\underline{0}}), \qquad (3)$
249	
250	where \underline{C}_{ϱ} and \underline{C}_{t} are the N ₂ O concentration calculated from the regression equation at
251	the start and at the end of the cover period, respectively, and $\underline{C_0}^*$ and $\underline{C_t}^*$ are the ¹⁵ N
252	atom% excess enrichment of N_2O at the start and at the end of the cover period,
253	respectively.
254	The emission of N_2O derived from nitrification was calculated from the ^{15}N
255	labelled N_2O emitted from the ${}^{15}NH_4$ + labelled microplots, which was determined in two
256	ways. If a significant N ₂ O emission took place, then emission of ¹⁵ N labelled N ₂ O (\underline{CC}^*)
257	was established as

259

$$\underline{CC}^* = \underline{C}_{\underline{t}}\underline{C}_{\underline{t}}^* - \underline{C}_{\underline{0}}\underline{C}_{\underline{0}}^* \tag{4}$$

260

261 If only a significant increase in 15 N enrichment of N₂O was detected, then the emission

262 of 15 N labelled N₂O was calculated as

263

264
$$\underline{CC}^* = (\underline{C}_{\underline{t}}^* - \underline{C}_{\underline{0}}^*)\underline{C}_{\underline{0}}$$
(5)

265

Gas measurements were initiated within 2.5 h of solution application and therefore it may be assumed that the unlabelled N pool (*i.e.* NH_4^+ in ${}^{15}NO_3^-$ labelled microplots and NO_3^- in ${}^{15}NH_4^+$ labelled microplots) had not yet been labelled via transformation of labelled N (Panek et al., 2000). Furthermore, the added solutions were assumed to affect the 0-2 cm soil layer, as this was the mean penetration depth. As a result, emission of N₂O-N derived from nitrification (*<u>CP</u>*) was established as

272

$$\underline{CP} = \underline{CC}^* / \underline{N_i}^*, \tag{6}$$

274

where $\underline{N_t}^*$ is the calculated ¹⁵N atom% excess enrichment of NH₄⁺ in the 0-2 cm soil layer. The estimates were subsequently converted from concentrations of N₂O to amounts of N. Likewise, emission of N₂O derived from denitrification was determined from the emission of ¹⁵N labelled N₂O from the ¹⁵NO₃⁻ labelled microplots, using equation 4 and 5, and the atom% excess enrichment of NO₃⁻ in the 0-2 cm soil layer, using equation 6. Panek et al. (2000) made similar calculations. The ¹⁵N tracer technique is based on the assumption that the ¹⁵N labelled compound mixes

282	homogeneously with the soil pool (Stevens et al., 1997), but in field trials it may be			
283	difficult to obtain completely uniform labelling. However, when the addition of labelled			
284	N by far exceeds the native soil N, there is initially only one significant pool, which is			
285	practically uniform (Bergsma et al., 1999).			
286	Gross nitrification rates were calculated according to Mosier and Schimel (1993)			
287	using the isotopic dilution of 15 N labelled NO ₃ ⁻ in the 0-10 cm soil layer measured			
288	during 24 h. The rate of nitrification and denitrification in the 0-2 cm soil layer was			
289	estimated as $\frac{1}{5}$ of the activity in the 0-10 cm layer. Gravimetric water content was			
290	converted to water-filled pore space using measured soil bulk density and assuming a			
291	particle density of 2.65 g cm ⁻³ .			
292	Analysis of variance (ANOVA), analysis of covariance (ANCOVA) and			
293	Tukey's multiple comparison tests ($\alpha = 0.05$) were performed using SAS General			
294	Linear Model procedure (SAS Institute, 1997). Statistics on net N ₂ O emissions and			
295	denitrification rates were performed on square root and log transformed data. Some			
296	results are reported as the mean \pm standard error.			
297				
298	3. Results			
299				
300	3.1. Soil moisture, temperature and pH			
301	Water-filled pore space of the soil increased between the two experiments due to			
302	rains during the intervening period ($P < 0.0001$; Fig. 1). Mean soil temperature at 10 cm Figure 1			
303	depth during the experimental periods was 15.3 °C and did not vary significantly			
304	between day and night or between the two experiments ($P \ge 0.29$; data not shown). Soil			

305	pH was 7.9 in the water treatment, decreased to 7.4 in the ammonium treatment and			
306	increased to 8.3 in the urine treatment ($P < 0.05$; data not shown).			
307				
308	3.2. Inorganic N and DOC			
309	The small amounts of ¹⁵ N label added in the water treatments had no significant			
310	effect on the content of soil NH_4^+ and NO_3^- in the microplots ($P \ge 0.057$; data not			
311	shown). In the water treatment, the major part of the inorganic N was found as NH_4^+ (P			
312	< 0.0001) (Table 2). Overall, data on soil NO ₃ ⁻ showed an effect of the added solutions Table 2			
313	(P < 0.0001), which derived from high net nitrification in the urine treatment. The			
314	increase in soil inorganic N in the urine treatment compared to the water control			
315	indicated that $84 \pm 4\%$ of the urea was hydrolysed before the first soil extraction. In all			
316	treatments the soil content of NO_2^- was below the detection limit of about 0.1 µg N g ⁻¹			
317	dry soil.			
318	The soil content of DOC showed an effect of the added solutions ($P = 0.0003$),			
319	which resulted from a higher content in the urine treatment compared to the water			
320	control in the second experiment ($P = 0.0028$; Fig. 2). However, relatively, the NO ₃ ⁻ Figure 2			
321	content increased more than the DOC content, and therefore the NO ₃ ⁻ /DOC ratio			
322	increased in the urine treatment compared to the water control in the second experiment			
323	(P = 0.032).			
324				
325	3.3. N_2O emission			

The N₂O emission and the final ¹⁵N enrichment of N₂O in the chambers are shown in Table 3 for each individual treatment. The ¹⁵NH₄⁺ and ¹⁵NO₃⁻ label added in Table 3 the water treatments had no effect on the amount of N₂O emitted from the microplots (P

329	= 0.36; Table 3). Compared to the water control, ammonium application increased the	
330	N ₂ O emission from 0.9 to 6.1 μ g N ₂ O-N m ⁻² h ⁻¹ (<i>P</i> = 0.011), whereas application of	
331	urine increased the emission from 3.9 to 42.3 μ g N ₂ O-N m ⁻² h ⁻¹ ($P < 0.0001$) (Fig. 3).	Figure 3
332	The increased N ₂ O emission from the water treated microplots between the two	
333	experiments was probably a result of increased WFPS ($P = 0.0021$). Using N ₂ O	
334	emission from the water treatments as a covariate revealed a significantly higher N_2O	
335	emission from the urine treatment compared to the ammonium treatment ($P = 0.013$).	
336		

337

3.4. ^{15}N of inorganic N

For soil sampled 5 h after solution application, the ${}^{15}N$ enrichment of NH_4^+ and 338 NO_3 in the paired treatments of water and ammonium or urine deviated more than 339 could be explained by the initial soil content of NH_4^+ and NO_3^- (Table 4). This 340 Table 4 suggested that the ¹⁵N enrichment had changed over the 12-hour period that separated 341 342 application of solutions and KCl extraction of the soil, and was perhaps a result of microbial activity or due to exchange of ${}^{15}NH_4^+$ with ${}^{14}NH_4^+$ adsorbed to soil colloids. 343 Furthermore, the ¹⁵N enrichment of NH_4^+ in the water/¹⁵NO₃⁻ treatments showed that 344 345 some NO_3^- had been converted into NH_4^+ , possibly via immobilization followed by mineralization or via dissimilatory nitrate reduction to ammonium (DNRA). Recovery 346 of the added ¹⁵N in the inorganic N pool of the 0-10 cm soil layer ranged between 8 and 347 118%, with the highest recovery occurring in the ammonium/ $^{15}NH_4^+$ and urine/ $^{15}NH_4^+$ 348 treatments. Low recovery was probably because of N uptake by plants or loss via 349 350 denitrification.

352	3.5.	Source of	of N_2O	produced	l in the	e 0-2	cm soil	layer
				1				~

353	In the labelled microplots, the ¹⁵ N enrichment of the emitted N ₂ O often	
354	exceeded the enrichment of soil NH_4^+ or NO_3^- measured 5 h after solution application in	
355	the 0-10 cm soil layer (Fig. 4; Table 4). In some cases it also exceeded the initial	Figure 4
356	enrichment calculated for the 0-10 cm soil layer. Thus, the ¹⁵ N enrichment of the	
357	labelled pool being nitrified or denitrified appeared to be higher than the mean	
358	enrichment in the 0-10 cm soil layer. During gas measurement, the added solutions were	
359	therefore assumed to affect the 0-2 cm soil layer only, as this was the mean penetration	
360	depth. The 15 N enrichment of N ₂ O emitted from the labelled microplots and the	
361	calculated ^{15}N enrichment of soil NH_4^+ and NO_3^- in the 0-2 cm soil layer are shown in	
362	Figure 4. Missing values are (1) N_2O from the water/ ¹⁵ NH_4^+ treatment in the first	
363	experiment, where no net N_2O emission took place (Table 3), and (2) NH_4^+ from the	
364	$urine/^{15}NH_4^+$ treatment, because the progression of urea hydrolysis was unknown.	
365	Based on the emission of $^{15}\mathrm{N}$ labelled $\mathrm{N_2O}$ and the enrichment of $\mathrm{NH_4}^+$ and	
366	NO_3^- in the labelled soil layer, it is possible to calculate the contribution of NH_4^+	
367	oxidation and NO_3^- reduction in the soil layer in question to the total N_2O emission (Fig.	
368	3). The responsible process for N_2O formation via NO_3^- reduction was most likely	
369	denitrification. As regards the water treatment, the emission of N_2O derived from	
370	nitrification or denitrification in the 0-2 cm soil layer was rather similar ($P \ge 0.053$) and	
371	did not change significantly between the two experiments ($P = 0.060$) (Fig. 3). In the	
372	ammonium treatment, the N_2O loss from denitrification in the 0-2 cm soil layer rose to	
373	1.1 μ g N ₂ O-N m ⁻² h ⁻¹ (<i>P</i> = 0.014), whereas the N ₂ O loss from nitrification in the 0-2 cm	
374	layer increased to 5.7 μ g N ₂ O-N m ⁻² h ⁻¹ (<i>P</i> = 0.0061), leading to a considerably higher	
375	N_2O loss from nitrification than from denitrification ($P = 0.015$). In the urine treatment,	

376	the N ₂ O loss from denitrification in the 0-2 cm soil layer rose to 21.0 μ g N ₂ O-N m ² h ²
377	($P < 0.0001$). The N ₂ O emission derived from nitrification could not be calculated in the
378	urine treatment because the 15 N enrichment of NH_4^+ was unknown. However, it is likely
379	that nitrification was the source of the urine-induced N_2O emission, which was not
380	accounted for by denitrification in the 0-2 cm soil layer. Thus, the N_2O loss from
381	nitrification in the 0-2 cm soil layer was calculated to be $20.1 \pm 1.2 \ \mu g \ N_2 O-N \ m^{-2} \ h^{-1}$,
382	and consequently, nitrification and denitrification contributed equally to the N_2O
383	production in the urine treatment ($P = 0.63$).
384	
385	3.6. Rate of gross nitrification and denitrification

The rate of gross nitrification in the water treatment measured via $^{15}NO_3^{-1}$ pool 386 Table 5 dilution declined between the two experiments (P = 0.0066; Table 5). In the urine 387 treatment, the nitrification rate increased by factor 9 compared to the water control (P <388 0.0001). A rate could not be determined for the ammonium/ $^{15}NO_3^{-1}$ treatment, because 389 the ¹⁵N enrichment of NO₃⁻ apparently increased between the two measurements (Table 390 391 4). This was probably caused by difficulties in collecting a representative soil sample, combined with increased uncertainty in the determinations, induced by the correction 392 for carry-over of NH_4^+ . 393

During the first experiment, the glass jar incubation with and without acetylene
revealed a high N₂O reductase activity, which in some cases caused the soil to be a sink
of atmospheric N₂O (Fig. 5 A). Production of N₂O via nitrification was detected in the
Figure 5
ammonium treatment, however net N₂O emission stopped after 5 h, probably because
N₂O reductase was induced (Fig. 5 C vs. D). The denitrification rate, determined via the
acetylene incubation, demonstrated that the denitrifying activity in the water treatment

17

-2 1 -1

NON

A1 A

increased between the two experiments (P = 0.0002), and was 7-fold higher in the urine treatment compared to the water control (P = 0.0014) (Table 5). No denitrifying activity was detected in the ammonium treatment. In the urine treatment, the N₂O loss ratios of nitrification (<u> L_N </u>) seemed to increase substantially compared to the water control and the loss ratios of denitrification (<u> L_D </u>) also appeared to increase (Table 5).

405

406 **4. Discussion**

407

408

4.1. Effect of urine on the N_2O production

Immediately after application of urine corresponding to 52.9 g N m⁻² the 409 emission of N₂O was 42.3 μ g N₂O-N m⁻² h⁻¹ (Fig. 3), which is comparable to the initial 410 411 rates determined in other field studies, where similar amounts of urine-N were applied 412 (Allen et al., 1996; Yamulki et al., 1998). Nitrification and denitrification seemed to 413 contribute equally to the N₂O production in the urine-affected soil. This could relate to 414 the intermediate soil water content of about 45% WFPS, which provided both aerobic 415 and anaerobic microsites, enabling nitrification and denitrification to occur 416 simultaneously. In contrast, Koops et al. (1997) found that initial N₂O from urine 417 applied on very dry top-soil was mainly produced via nitrification, however, in moist 418 soil (75-90% WFPS) denitrification was reported to be the dominant source of the initial 419 N₂O (Monaghan and Barraclough, 1993; De Klein and Van Logtestijn, 1994). In all the mentioned studies urine was applied at rates between 40 and 55 g N m⁻², thus in 420 421 amounts comparable to the present study. Concerning the N₂O produced during nitrification, the hypothesis was that the 422

 $423 \qquad N_2O \ production \ would \ increase \ mainly \ as \ a \ result \ of \ an \ increase \ in \ the \ N_2O \ loss \ ratio \ of$

424	the process (\underline{L}_N). This hypothesis turned out only to be partly right as both the gross
425	nitrification rate (<u>N</u>) and the N ₂ O loss ratio of nitrification (<u>L_N</u>) increased substantially
426	in the urine treatment compared to the water control. More specifically, the simulated
427	urine deposition lead to a 9-fold increase of the nitrification rate and calculated on soil
428	weight basis the rate corresponded to $6.3 \pm 0.3 \ \mu g \ N \ g^{-1}$ soil d ⁻¹ . Studies reporting gross
429	nitrification rates in urine-affected soil are very rare. For comparison, however, gross
430	nitrification was measured to be 2.4 μ g N g ⁻¹ soil d ⁻¹ in a laboratory study on soil at 50%
431	WFPS and fertilized with 20 g N m ⁻² (Bateman and Baggs, 2005). Application of urine
432	in the field at rates below 53 g N m ⁻² has been seen to inhibit nitrification for 2-14 d,
433	possibly as a result of microbial stress (Thomas et al., 1988; Bol et al. 2004). Monaghan
434	and Barraclough (1992) found that inhibition of nitrification due to $NH_{3(aq)}$ toxicity and
435	salt-induced stress only occurred when the urine-N concentration exceed 16 g N l^{-1} .
436	Thus, the urine-N concentration of 15.6 g N l^{-1} in the present study may explain why the
437	nitrifying bacteria were not adversely affected in the urine-treated soil.
438	The increased $\mathrm{NH_4}^+$ availability was most likely a part of the reason for the
439	higher nitrification rate in the urine treatment than in the water control. Furthermore,
440	soil pH_{H2O} rose from 7.9 in the water control to 8.3 in the urine treatment because of the
441	alkaline products formed during the hydrolysis of urea. A recent field study
442	demonstrated that the rate of nitrification increased with soil pH_{H2O} in the range from 6
443	to 8, which supported indications found in earlier studies (Kyveryga et al., 2004).
444	Hence, the higher soil pH in the urine treatment could be part of the reason for the
445	increased nitrification rate, indicating that the higher soil pH, in part, caused the greater
446	N ₂ O loss from nitrification. In line with this, Yoshida and Alexander (1970) showed

that the N₂O production by an ammonia-oxidizing bacterium strongly increased when
pH was raised from 6 to 8.

449 In well-aerated soils, the N₂O loss ratio of nitrification is usually below 0.5% 450 (Ambus, 2005; Mathieu et al. 2006). In the second experiment, the ratio seemed to increase from 0.02% in the water control to 0.29% in the urine-treated soil. To my 451 452 knowledge this is the first time the N₂O loss ratio of nitrification has been determined in 453 urine patches. In the study of Bateman and Baggs (2005), which was conducted at equivalent soil water content (50% WFPS) but with lower N addition (20 g N m^{-2} as 454 NH₄NO₃), the N₂O loss ratio of nitrification was determined to be 0.18%. A study on 455 456 pure cultures of an ammonia-oxidizing bacterium showed that the N₂O loss ratio rose with increasing NH_4^+ concentration up to about 1 g NH_4 -N l⁻¹ (Yoshida and Alexander. 457 458 1970). Thus, the gradual increase in the N₂O loss ratio of nitrification from the water 459 control via the study of Bateman and Baggs (2005) to the urine treatment may relate to 460 the increase in NH₄⁺ availability.

The hypothesis for denitrification was that the N₂O loss from the process would 461 462 increase solely as a result of an increase in the rate of the process (D). The N_2O loss ratio of denitrification was predicted to decline. This hypothesis also turned out only to 463 464 be partly right as both the denitrification rate (\underline{D}) and the N₂O loss ratio of 465 denitrification (L_D) appeared to increase in the urine treatment compared to the water control. Calculated as diurnal value, denitrification in the 0-10 cm soil layer constituted 466 $49 \pm 10 \text{ mg N m}^{-2} \text{ d}^{-1}$. This rather low rate was expected as high rates of denitrification 467 468 are usually associated with soil water contents above 60% WFPS (Davidson, 1991; De 469 Klein and Van Logtestijn, 1996). The rate is in the same order of magnitude at rates 470 measured by Koops et al. (1997) in urine patches on peat soil.

The denitrification rate in the urine treatment was stimulated by the enhanced supply of NO_3^- from nitrification and possibly also by the higher pH and the increased soil content of DOC (Weier et al., 1993; Simek and Cooper, 2002). The organic compounds in the added urine largely explained the observed rise of DOC in the urine treatment, thus there was no evidence for release of DOC due to root scorching or solubilization of soil organic C as observed in some studies (e.g. Monaghan and Barraclough, 1993; Shand et al., 2002).

A recent study showed that the hippuric acid component of urine inhibited denitrification via the breakdown product benzonic acid, and thereby decreased the N₂O emission (Van Groenigen et al., 2006). However, the denitrifying activity was only affected when the concentration of hippuric acid exceeded 3.9 mmol kg⁻¹ soil. These findings are supported by the present study where a hippuric acid content of 3.4 mmol kg⁻¹ soil in the 0-5 cm layer did not seem to hinder denitrification.

484 The N₂O loss ratio of denitrification appeared to increase from 0.9% in the water 485 control to 5.1% in the urine treatment. When denitrifying bacteria have much greater 486 access to oxidant than to reduct they tend to reduce nitrogen oxide incompletely, resulting in a high N₂O/N₂ ratio of end products (Hutchinson and Davidson, 1993; 487 488 Weier et al., 1993). Hence, the higher N₂O loss ratio of denitrification in the urine 489 treatment compared to the water control might be a result of increased NO₃⁻/DOC ratio 490 (Fig. 2). The measured N₂O loss ratio of denitrification in the urine treatment is much 491 lower than ratios, which can be calculated from the data presented by De Klein and Van 492 Logtestijn (1994), giving N₂O loss ratios during denitrification of 54 and 80% following application of 40 g urine-N m⁻². However, my ratio is with in the range of 4 and 27%493

reported for ryegrass swards fertilized with about 300 kg N ha⁻¹ (Kester et al., 1997;
Stevens and Laughlin, 1998).

496

497 4.2. Effect of soil moisture on the N_2O production

498 The rise in the soil water content between the two experiments enabled an 499 evaluation of the effect of soil moisture on the N₂O production via nitrification and 500 denitrification based on the results for the water treatment. The soil water content 501 increased from about 35% WFPS in the first experiment to about 45% WFPS in the 502 second experiment (Fig. 1). The net emission of N₂O from the water treatment rose 503 between the two experiments, which seemed to be a result of increased denitrification 504 rate (Fig. 3; Table 5). Presence of O₂ is most often the limiting factor for denitrification 505 (Tiedje, 1988; Robertson, 1989), and the increased rate was probably caused by the more frequent occurrence of anaerobic microsites following the rise in WFPS. 506

In most cases the measured N_2O formation via NO_3^- reduction was probably due to denitrification. Furthermore, the ¹⁵N data indicated that DNRA possibly occurred in the water treatment (Table 4) and therefore this process could have produced a part of the N₂O originating from NO₃⁻. Occurrence of DNRA was also reported in a study on soil from permanent grassland (Stevens et al., 1998). The N₂O loss ratio for denitrification in the water treatment appeared to be highest in the first experiment (Table 5), which is in line with Tiedje (1988) stating that the N₂O/N₂ ratio generally

514 increases with increasing O₂ concentrations.

515 The rate of nitrification dropped as the soil water content increased from 35 and 516 45% WFPS. This is contrary to the study of Grundmann et al. (1995), where maximum 517 nitrification rate in a sandy loam soil was found at 50% WFPS. The N₂O loss ratio of

the process appeared to increase slightly (Table 5), leading to an unchanged N₂O loss
from nitrification (Fig. 3).

520	At 35% WFPS during the first experiment, simultaneous emission and
521	consumption of N ₂ O by the soil sometimes took place, e.g. in the water/ $^{15}NH_4^+$
522	treatment emission of 15 N labelled N ₂ O was detected without net N ₂ O emission (Table
523	3). In some cases the soil acted as a net sink of atmospheric N_2O (e.g. Fig. 5A), which
524	was also observed in other studies on grassland (Glatzel and Stahr, 2001; Wrage et al.,
525	2004a). The responsible process for the reduction of N_2O could be denitrification,
526	nitrifier denitrification or DNRA (Poth, 1986; Conrad, 1996).
527	
528	4.3. Effect of ammonium on the N_2O production
529	Application of an ammonium solution (52.9 g N m ⁻²) to the pasture soil at about
530	35% WFPS resulted in a rather low N ₂ O emission of 6.1 μ g N ₂ O-N m ⁻² h ⁻¹ , which was
531	primarily formed during nitrification (Fig. 3, 5). The rate of nitrification seemed to be
532	low as no NO ₃ ⁻ accumulation was detected, although the denitrification rate was minor
533	(Table 2, 5). In many ways the results for the ammonium treatment deviated from the
534	results obtained in the urine treatment during the second experiment. The retarded
535	processes in the ammonium treatment could relate to the lower soil water content, the
536	lower pH_{H2O} of 7.4 and a slightly lower osmotic potential compared to the urine
537	treatment.

538

539 4.4. Conclusions

540 Nitrification and denitrification contributed equally to the enhanced N₂O
541 emission from the simulated urine patches and the N₂O loss was caused by a

542 combination of higher rates and higher loss ratios of the processes. The study shows that 543 even though denitrification rates are low at soil water contents under 60% WFPS, the 544 process may account for a considerable part of the N₂O produced in urine patches deposited on these soils. The nitrification rate was stimulated by the high NH_4^+ 545 546 availability and possibly also by the increased soil pH following urea hydrolysis. In 547 itself a high nitrification rate does lead to raised N₂O losses, and furthermore, it enables 548 denitrification with associated N₂O losses. Based on the present study, an increased 549 nitrification rate therefore appears to be the most important factor explaining the high initial N₂O emission from urine patches deposited on well-aerated soils. The study 550 551 delivers new information on the mechanisms responsible for the N₂O formation in urine 552 patches, and the results are suitable for incorporation into process-based modelling of 553 N₂O emissions from grazed grasslands.

554

555 Acknowledgements

This work was funded by the Danish Research Centre for Organic Farming (DARCOF) and the Danish Agricultural and Veterinary Research Council. I wish to thank Dr. Per Ambus for his qualified advice, Liselotte Meltofte for her assistance with the ¹⁵N diffusion as well as Dr. Sten Struwe, Dr. Finn P. Vinther and Jane Hansen for their valuable comments on the manuscript.

561

562 **References**

Allen, A.G., Jarvis, S.C., Headon, D.M., 1996. Nitrous oxide emissions from soils due
to inputs of nitrogen from excreta return by livestock on grazed grassland in the
U.K. Soil Biology & Biochemistry 28, 597-607.

566	Ambus, P., 2005. Relationship between gross nitrogen cycling and nitrous oxide
567	emission in grass-clover pasture. Nutrient Cycling in Agroecosystems 72, 189-199.
568	Ambus, P., Christensen, S., 1993. Denitrification variability and control in a riparian fen
569	irrigated with agricultural drainage water. Soil Biology & Biochemistry 25, 915-
570	923.
571	Bateman, E.J., Baggs, E.M., 2005. Contribution of nitrification and denitrification to
572	N ₂ O emissions from soils at different water-filled pore space. Biology and Fertility
573	of Soils 41, 379-388.
574	Bergsma, T.T., Bergsma, Q.B.C., Ostrom, N.E., Robertson, G.P., 1999. A heuristic
575	model for the calculation of dinitogen and nitrous oxide flux from nitrogen-15-
576	labeled soil. Soil Science Society of America Journal 63, 1709-1716.
577	Bol, R., Petersen, S.O., Christofides, C., Dittert, K., Hansen, M.N., 2004. Short-term
578	N_2O , CO_2 , NH_3 fluxes, and N/C transfers in a Danish grass-clover pasture after
579	simulated urine deposition in autumn. Journal of Plant Nutrition and Soil Science
580	167, 568-576.
581	Clough, T.J., Kelliher, F.M., Sherlock, R.R., Ford, C.D., 2004. Lime and soil moisture
582	effects on nitrous oxide emissions from a urine patch. Soil Science Society of
583	America Journal 68, 1600-1609.
584	Clough, T.J., Ledgard, S.F., Sprosen, M.S., Kear, M.J., 1998. Fate of ¹⁵ N labelled urine

- on four soil types. Plant and Soil 199, 195-203.
- 586 Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H₂,
- 587 CO, CH₄, OCS, N₂O, and NO). Microbiological Reviews 60, 609-640.

- 588 Crutzen, P.J., 1981. Atmospheric chemical processes of the oxides of nitrogen,
- 589 including nitrous oxide. In: Delwiche, C.C. (Ed.), Denitrification, Nitrification and
- 590 Atmospheric Nitrous Oxide. John Wiley & Sons, Chichester, pp. 7-44.
- 591 CWB, 2003. Agroclimate in Taastrup. Dept. of Agric. Sciences, Section of Env. Res.
- and Tech., Roy. Vet. and Agric. Univ. Copenhagen.
- 593 Davidson, E.A., 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial
- 594 ecosystems. In: Rogers, J.E., Whitman, W.B. (Eds.), Microbial Production and
- 595 Consumption of Greenhouse Gases: Methan, Nitrogen Oxides, and Halomethanes.
- 596 American Society for Microbiology, Washington, DC, pp. 219-235.
- 597 De Klein, C.A.M., Van Logtestijn, R.S.P., 1994. Denitrification and N₂O emission from
 598 urine-affected grassland soil. Plant and Soil 163, 235-242.
- 599 De Klein, C.A.M., Van Logtestijn, R.S.P., 1996. Denitrification in grassland soils in
- 600 The Netherlands in relation to irrigation, N-application rate, soil water content and

soil temperature. Soil Biology & Biochemistry 28, 231-237.

- 602 EEA, 2006. Annual European Community greenhouse gas inventory 1990-2004 and
- 603 inventory report 2006. Technical report No 6. European Environment Agency,
- 604 Copenhagen, 429 pp.
- FAO, 2004. FAO Statistical Databases [online]. Available: http://faostat.fao.org
 [05/10/05].
- 607 Firestone, M.K., Davidson, E.A., 1989. Microbiological basis of NO and N₂O
- 608 production and consumption in soil. In: Andreae, M.O., Schimel, D.S. (Eds.),
- Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere.
- 510 John Wiley & Sons, Chichester, pp. 7-21.

- Glatzel, S., Stahr, K., 2001. Methane and nitrous oxide exchange in differently fertilised
 grassland in southern Germany. Plant and Soil 231, 21-35.
- 613 Granli, T., Bøckmann, O.C., 1994. Nitrous oxide from agriculture. Norwegian Journal
- of Agricultural Sciences, Supplement 12, 128 pp.
- 615 Grundmann, G.L., Renault, P., Rosso, L., Bardin, R., 1995. Differential effects of soil
- water content and temperature on nitrification and aeration. Soil Science Society of
 America Journal 59, 1342-1349.
- Harada, T., Kai, H., 1968. Studies on the environmental conditions controlling
- 619 nitrification in soil. Soil Science and Plant Nutrition 14, 20-26.
- Hutchinson, G.L., Davidson, E.A., 1993. Processes for production and consumption of
- 621 gaseous nitrogen oxides in soil. In: Harper, L.A., et al. (Eds.), Agricultural
- Ecosystem Effects on Trace Gases and Global Climate Change. American Society
 of Agronomy, Madison, Wisconsin, pp. 79-93.
- 624 IPCC, 2001. Climate Change 2001: The Scientific Basis. Contribution of Working
- 625 Group I to the Third Assessment Report of the Intergovernmental Panel on Climate
- 626 Change. Houghton, J.T., et al. (Eds.), Cambridge University Press, Cambridge, 881627 pp.
- 628 Kester, R.A., Meijer, M.E., Libochant, J.A., De Boer, W., Laanbroek, H.J., 1997.

629 Contribution of nitrification and denitrification to the NO and N₂O emissions of an

- acid forest soil, a river sediment and a fertilized grassland soil. Soil Biology &
- 631 Biochemistry 29, 1655-1664.
- Koops, J.G., Van Beusichem, M.L., Oenema, O., 1997. Nitrous oxide production, its
 source and distribution in urine patches on grassland on peat soil. Plant and Soil
 191, 57-65.

635	Kyveryga, P.M., Blackmer, A.M., Ellsworth, J.W., Isla, R., 2004. Soil pH effects on
636	nitrification of fall-applied anhydrous ammonia. Soil Science Society of America
637	Journal 68, 545-551.
638	Mathieu, O., Hénault, C., Lévêque, J., Baujard, E., Milloux, MJ., Andreux, F., 2006.
639	Quantifying the contribution of nitrification and denitrification to the nitrous oxide
640	flux using ¹⁵ N tracers. Environmental Pollution 144, 933-940.
641	Monaghan, R.M., Barraclough, D., 1992. Some chemical and physical factors affecting
642	the rate and dynamics of nitrification in urine-affected soil. Plant and Soil 143, 11-
643	18.
644	Monaghan, R.M., Barraclough, D., 1993. Nitrous oxide and dinitrogen emissions from
645	urine-affected soil under controlled conditions. Plant and Soil 151, 127-138.
646	Mosier, A.R., Schimel, D.S., 1993. Nitrification and denitrification. In: Knowles, R.,
647	Blackburn, T.H. (Eds.), Nitrogen Isotope Techniques. Academic Press, London, pp.
648	181-208.
649	Okereke, G.U., 1984. Prevalence of nitrous oxide reducing capacity in denitrifiers from
650	a variety of habitats. Plant and Soil 81, 421-428.
651	Panek, J.A., Matson, P.A., Ortiz-Monasterio, I., Brooks, P., 2000. Distinguishing
652	nitrification and denitrification sources of N2O in a Mexican wheat system using
653	¹⁵ N. Ecological Applications 10, 506-514.
654	Petersen, S.O., Stamatiadis, S., Christofides, C., 2004. Short-term nitrous oxide
655	emissions from pasture soil as influenced by urea level and soil nitrate. Plant and
656	Soil 267, 117-127.
(57	Deth M 1006 Divites an analystica from vites to here Nites installets Availied

Poth, M., 1986. Dinitrogen production from nitrate by a *Nitrosomonas* isolate. Applied
and Environmental Microbiology 52, 957-959.

660	potential controls on nitrogen retention. In: Procter, J. (Ed.), Mineral Nutrients in
661	Tropical Forest and Savanna Ecosystems. Blackwell Scientific, Oxford, pp. 55-69.
662	Ryden, J.C., Skinner, J., Nixon, D.J., 1987. Soil core incubation system for the field
663	measurement of denitrification using acetylene-inhibition. Soil Biology &
664	Biochemistry 19, 753-757.
665	SAS Institute, 1997. SAS/STAT users guide, release 6.12. Statistical Analysis Systems
666	Institute, Cary.
667	Schmidt, E.L., 1982. Nitrification in soil. In: Stevenson, F.J. (Ed.), Nitrogen in
668	Agricultural Soils. American Society of Agronomy, Madison, Wisconsin, pp. 253-
669	288.
670	Shand, C.A., Williams, B.L., Dawson, L.A., Smith, S., Young, M.E., 2002. Sheep urine
671	affects soil solution nutrient composition and roots: differences between field and
672	sward box soils and the effects of synthetic and natural sheep urine. Soil Biology &
673	Biochemistry 34, 163-171.
674	Sherlock, R.R., Goh, K.M., 1983. Initial emission of nitrous oxide from sheep urine
675	applied to pasture soil. Soil Biology & Biochemistry 15, 615-617.
676	Simek, M., Cooper, J.E., 2002. The influence of soil pH on denitrification: progress
677	towards the understanding of this interaction over the last 50 years. European
678	Journal of Soil Science 53, 345-354.

Robertson, G.P., 1989. Nitrification and denitrification in humid tropical ecosystems:

- 679 Sørensen, P., Jensen, E.S., 1991. Sequential diffusion of ammonium and nitrate from
- 680 soil extracts to a polytetrafluoroethylene trap for ¹⁵N determination. Analytical
- 681 Chimica Acta 252, 201-203.

- 682 Stevens, R.J., Laughlin, R.J., 1998. Measurement of nitrous oxide and di-nitrogen
- 683 emissions from agricultural soils. Nutrient Cycling in Agroecosystems 52, 131-139.
- 684 Stevens, R.J., Laughlin, R.J., Burns, L.C., Arah, J.R.M., Hood, R.C., 1997. Measuring
- the contributions of nitrification and denitrification to the flux of nitrous oxide from
- soil. Soil Biology & Biochemistry 29, 139-151.
- Stevens, R.J., Laughlin, R.J., Malone, J.P., 1998. Soil pH affects the processes reducing
 nitrate to nitrous oxide and di-nitrogen. Soil Biology & Biochemistry 30, 11191126.
- 690 Thomas, R.J., Logan, K.A.B., Ironside, A.D., Bolton, G.R., 1988. Transformations and
- fate of sheep urine-N applied to an upland UK pasture at different times during thegrowing season. Plant and Soil 107, 173-181.
- Tiedje, J.M., 1988. Ecology of denitrification and dissimilatory nitrate reduction to
 ammonium. In: Zehnder, A.J.B. (Ed.), Biology of Anaerobic Microorganisms. John
- 695 Wiley & Sons, Chichester, pp. 179-244.
- 696 Van Groenigen, J.W., Palermo, V., Kool, D.M., Kuikman, P.J., 2006. Inhibition of
- 698 Biology & Biochemistry 38, 2499-2502.
- 699 Weier, K.L., Doran, J.W., Power, J.F., Walters, D.T., 1993. Denitrification and the
- dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and
- nitrate. Soil Science Society of America Journal 57, 66-72.
- 702 Whitehead, D.C., Lockyer, D.R., Raistrick, N., 1989. Volatilization of ammonia from
- ⁷⁰³ urea applied to soil: Influence of hippuric acid and other constituents of livestock
- urine. Soil Biology & Biochemistry 21, 803-808.

705	Williams, D.L.1., Ineson, P., Cowards, P.A., 1999. Temporal variations in nitrous oxide
706	fluxes from urine-affected grassland. Soil Biology & Biochemistry 31, 779-788.
707	Wrage, N., Velthof, G.L., Van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier
708	denitrification in the production of nitrous oxide. Soil Biology & Biochemistry 33,
709	1723-1732.
710	Wrage, N., Lauf, J., Del Prado, A., Pinto, M., Pietrzak, S., Yamulki, S., Oenema, O.,
711	Gebauer, G., 2004a. Distinguishing sources of N_2O in European grasslands by
712	stable isotope analysis. Rapid Communications in Mass Spectrometry 18, 1201-
713	1207.
714	Wrage, N., Velthof, G.L., Laanbroek, H.J., Oenema, O., 2004b. Nitrous oxide
715	production in grassland soils: assessing the contribution of nitrifier denitrification.
716	Soil Biology & Biochemistry 36, 229-236.
717	Yamulki, S., Jarvis, S.C., Owen, P., 1998. Nitrous oxide emissions from excreta applied
718	in a simulated grazing pattern. Soil Biology & Biochemistry 30, 491-500.
719	Yoshida, T., Alexander, M., 1970. Nitrous oxide formation by Nitrosomonas europaea
720	and heterotrophic microorganisms. Soil Science Society of America Proceedings 34,
721	880-882.

722 *Table 1.* Contents of the solutions prepared for the two experiments, *i.e.* the ¹⁵N labelled compound and its amount, other contents (*viz.* unlabelled NH₄Cl or

- virine), final ¹⁵N enrichment of NH_4^+ or NO_3^- and total N concentration. The solutions were applied on microplots and the N₂O emission was measured from
- all treatments. Additional purposes of the individual treatments are given in the table.

		Labelled compound		Other contents	Final ¹⁵ N enrichment	Total N concentration	This treatment specifically provided data on	
			¹⁵ NH₄CI (99 atom%)	K ¹⁵ NO ₃ (99 atom%)		onnonnon	concontration	
	Experiment	Treatment	mmol ¹⁵ N l ⁻¹	mmol ¹⁵ N l ⁻¹		atom%	g N I⁻¹	
	1+2	Water only	0	0	None	_	0	Background ^{15}N enrichment of emitted $N_2O,$ soil $\rm NH_4^+$ and $\rm NO_3^-$ in microplots treated with water
	1+2	Water/ ¹⁵ NH ₄ ⁺	0.37	0	None	99	0.005	The N_2O loss from nitrification in microplots treated with water
	1+2	Water/ ¹⁵ NO ₃ ⁻	0	1.6	None	99	0.023	The N_2O loss from denitrification and the nitrification rate in microplots treated with water
	1	$Ammonium/^{15}NH_4^+$	48	0	NH₄CI (14.9 g N I ⁻¹)	4.6	15.6	The N_2O loss from nitrification in microplots treated with an ammonium solution
	1	Ammonium/ ¹⁵ NO3 ⁻	0	1.9	NH₄CI (15.6 g N I ^{⁻1})	99	15.6	The N_2O loss from denitrification and the nitrification rate in microplots treated with an ammonium solution
_	2	Urine/ ¹⁵ NH ₄ ⁺	42	0	Artificial urine ^a	61	15.6	The N_2O loss from nitrification in microplots treated with artificial urine
	2	Urine/ ¹⁵ NO ₃ ⁻	0	1.9	Artificial urine ^a	99	15.6	The N ₂ O loss from denitrification and the nitrification rate in microplots treated with artificial urine

- ^a Consisting of urea (28.5 g l^{-1}), hippuric acid (11.9 g l^{-1}), creatinine (0.3 g l^{-1}), allantoin (0.6 g l^{-1}), uric acid (0.2 g l^{-1}), NH₄Cl (adjusted to make a total
- 727 concentration of 1.4 g l^{-1}), KHCO₃ (22.9 g l^{-1}) and KCl (16.9 g l^{-1})

728 *Table 2.* Content of soil NH_4^+ and NO_3^- (g N m⁻²) in the 0-10 cm soil layer of the

microplots determined about 5 and 31 h after application of water, ammonium solution

		5 h after a	pplication	31 h after a	pplication
Experiment	Treatment	NH_4^+	NO ₃ ⁻	NH_4^+	NO ₃ ⁻
1	Water	0.29 (0.03)	0.14(0.01)	0.47 (0.06)	0.12(0.00)
1	Ammonium	54.94 (4.72)	0.14(0.04)	57.75(5.35)	0.09(0.01)
2	Water	0.19 (0.03)	0.11(0.01)	0.27 (0.03)	0.08(0.02)
2	Urine	39.09 (1.91)	0.24 (0.04)	28.15(2.12)	1.05(0.05)

and urine; n = 4-12, means and SE (in brackets).

		Net N ₂ O emission	^{15}N enrichment of headspace N2O
Experiment	Treatment	µg N₂O-N m⁻² h⁻¹	atom%
1	Water only	0 (0)	0.3694 (0.0008)
1	Water/ ¹⁵ NH ₄ ⁺	0 (ND)	0.5651 (0.0132)
1	Water/ ¹⁵ NO ₃ ⁻	1.8 (1.5)	0.9266 (0.2275)
1	Ammonium/ ¹⁵ NH ₄ ⁺	5.5 (1.8)	1.4005 (0.0943)
1	Ammonium/ ¹⁵ NO3 ⁻	6.5 (2.2)	3.4536 (0.6615)
2	Water only	3.6 (0.9)	0.3676 (0.0005)
2	Water/ ¹⁵ NH ₄ ⁺	3.3 (0.4)	0.5881 (0.0545)
2	Water/ ¹⁵ NO ₃ ⁻	5.0 (0.4)	2.2738 (0.6671)
2	Urine/ ¹⁵ NH ₄ ⁺	38.5 (4.8)	5.0307 (0.4215)
2	Urine/ ¹⁵ NO ₃ ⁻	46.1 (2.6)	34.0064 (0.9668)

732 *Table 3.* Net N₂O emission and final 15 N enrichment of headspace N₂O for all

treatments measured in microplots; n = 1-4, means and SE (in brackets).

734

The treatments are described in Table 1.

Table 4. Nitrogen-15 enrichment of soil NH_4^+ and NO_3^- (atom% excess) in the 0-10 cm

soil layer measured about 5 and 31 h after application of water, ammonium solution or

738	urine labelled with ${}^{15}NH_4^+$ or ${}^{15}NO_3^-$, n = 1-4, means and SE (in brackets).	
-----	---	--

		5 h after application		31 h after	application
Experiment	Treatment	¹⁵ NH ₄ ⁺	¹⁵ NO ₃ ⁻	¹⁵ NH ₄ ⁺	¹⁵ NO ₃ ⁻
1	Water/ ¹⁵ NH ₄ ⁺	0.2631 (ND)	0.7915 (ND)	ND	ND
1	Ammonium/ ¹⁵ NH ₄ ⁺	4.6710 (0.0277)	0 (ND)	ND	ND
2	Water/ ¹⁵ NH ₄ ⁺	0.2908 (ND)	0.8711 (ND)	ND	ND
2	Urine/ ¹⁵ NH ₄ ⁺	5.3603 (0.1208)	0 (ND)	ND	ND
1	Water/ ¹⁵ NO ₃ ⁻	0.6058 (0.0337)	9.5903 (ND)	1.0128 (0.1005)	2.4571 (ND)
1	Ammonium/ ¹⁵ NO ₃ ⁻	0.0053 (0.0012)	2.7122 (ND)	0.0117 (0.0014)	3.2492 (ND)
2	Water/ ¹⁵ NO ₃ ⁻	0.7360 (ND)	3.8859 (ND)	0.5722 (ND)	1.1632 (ND)
2	Urine/ ¹⁵ NO ₃ ⁻	0.0336 (0.0022)	2.0624 (0.1477)	0.0414 (0.0048)	0.1059 (0.0537)

740	<i>Table 5.</i> Rates of gross nitrification and denitrification, moles of N ₂ O-N lost per moles
741	of NO ₃ ⁻ produced via nitrification (\underline{L}_N) and moles of N ₂ O lost per moles of N ₂ + N ₂ O
742	produced via denitrification ($\underline{L}_{\underline{D}}$) in the 0-2 cm soil layer of microplots treated with
743	water, ammonium solution and urine; $n = 4$, means and SE (in brackets).

		Gross nitrification	<u>L_N</u>	Denitrification	<u>L</u>
Experiment	Treatment	mg NO ₃ -N m ⁻² h ⁻¹	%	µg N m⁻² h⁻¹	%
1	Water	1.3 (0.1)	0.01	0.60 (0.37)	26
1	Ammonium	ND	ND	0 (ND)	ND
2	Water	0.8 (0.1)	0.02	62 (16)	0.9
2	Urine	6.9 (0.3)	0.29	412 (81)	5.1

745	Figure	captions
745	riguic	capuons

747 Figure 1. Summed rainfall and irrigation (mm) as well as water-filled pore space in the

748 0-10 cm soil layer (%; n = 4, means \pm SE) during the experimental period.

749

Figure 2. Soil content of dissolved organic carbon (DOC) and the NO_3^{-}/DOC ratio in

the 0-10 cm soil layer of microplots treated with water, ammonium solution and urine; n = 4; means \pm SE.

753

754	Figure 3.	Net N ₂ O	emission (n = 6 - 12) as well as	S_{N_2O}	derived from	oxidation	of NH_4^+
/ 2 1	1 181110 011		CHIRDDICH (, asen as	1120	4011104 11011	1 Onitaddion	01 1 114

in the 0-2 cm soil layer determined in ${}^{15}NH_4^+$ labelled microplots (n = 4) and N₂O

derived from reduction of NO_3^- in the 0-2 cm soil layer determined in ${}^{15}NO_3^-$ labelled

757 microplots (n = 4) for the water, ammonium and urine treatment; means \pm SE. Please,

note the break on the y-axis.

759

Figure 4. Calculated ¹⁵N enrichment of soil NH_4^+ and NO_3^- in the 0-2 cm soil layer as well as measured ¹⁵N enrichment of emitted N_2O (n = 4, means ± SE) in microplots treated with water, ammonium solution or urine labelled with (A) ¹⁵ NH_4^+ or (B) ¹⁵ NO_3^- .

Figure 5. Headspace concentration of N_2O in four glass jars during control or acetylene incubation of soil cores taken during the first experiment from microplots treated with (A, B) water or (C, D) ammonium solution; n = 1.