- MANUAL -

Risikomanagement von Pflanzenschutzmittel-Rückständen in Lebensmitteln aus Ökologischem Landbau

Erstellt von:
Gesellschaft für Ressourcenschutz mbH
Prinzenstraße 4, 37073 Göttingen
Tel.: +49 551 58657, Fax: +49 551 58774
E-Mail: jochen.neuendorff@gfrs.de
Internet: http://www.gfrs.de/

Prüfverein Verarbeitung ökologische Landbauprodukte e.V.
Vorholzstr. 36, 76137 Karlsruhe
Tel.: +49 721 35239-20, Fax: +49 721 35239-09
Internet: http://www.pruefverein.de/

Gefördert vom Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz im Rahmen des Bundesprogramms Ökologischer Landbau

Manual

Risikomanagement von Pflanzenschutzmittel-Rückständen in Lebensmitteln aus Ökologischem Landbau

BÖL
Bundesprogramm Ökologischer Landbau
1	Einleitung	1
2	Begriffsbestimmungen	3
3	Rechtliche Rahmenbedingungen der EU-Öko-VO	5
4	Grundlagen zur Probenahme von Lebens- und Futtermitteln	7
4.1	Probenahmeanleitungen	7
4.2	Qualität der Ausgangschargen	9
4.3	Art der Probe und Nachweismethoden	12
5	Auswahl geeigneter Untersuchungslaboratorien	14
5.1	Akkreditierung nach ISO 17025	14
5.2	Liste der Wirkstoffe	16
5.3	Teilnahme an Ringversuchen	16
5.4	Beratung und Service	17
6	Risikoorientierte Durchführung von Rückstandsuntersuchungen im Kontrollverfahren nach EU-Öko-VO	18
6.1	Auswahl der zu untersuchenden Produkte	19
6.2	Unternehmensinterne Qualitätssicherung	20
6.2.1	Einteilung des Rohwarensortiments in Risikoklassen	22
6.2.2	Beispiel: Erstellung eines Analysenplanes	22
6.2.3	Monitoringsysteme	24
Abkürzungsverzeichnis

BLE Bundesanstalt für Landwirtschaft und Ernährung
BMELV Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz
BVL Bundesamt für Verbraucherschutz und Lebensmittelsicherheit
Diät-VO Verordnung über diätetische Lebensmittel
EG Europäische Gemeinschaft
EU Europäische Union
EU-Öko-VO Verordnung (EWG) Nr. 2092/91
EWG Europäische Wirtschaftsgemeinschaft
GVO Gentechnisch veränderter Organismus
LFGB Lebensmittel-, Bedarfsgegenstände- und Futtermittelgesetzbuch
ÖLG Öko-Landbaugesetz
QM Qualitätsmanagement
PSM Pflanzenschutz- und Schädlingsbekämpfungsmittel
RHmV Rückstands-Höchstmengenverordnung
VO Verordnung

Untersuchungsmethoden

GC Gas-Chromatographie
Headspace-GC Spezielles Gaschromatographisches Analyseverfahren
HPLC High Performance Liquid Chromatography, Hochleistungs-
Flüssigchromatographie
LC-MS Flüssigchromatographie und nachfolgend Massenspektrometrie
1 Einleitung

Der ökologische Landbau entwickelte sich als eine Methode zur Erzeugung von Lebens- und Futtermitteln, die ohne naturfremde Stoffe wie künstliche Dünger und agrochemische Stoffe auskommt sowie Tieren und Pflanzen mit Respekt gegenüber ihren natürlichen Bedürfnissen begegnet. Ein Kontrollverfahren wurde auf dieser Grundlage zunächst privatrechtlich etabliert und später gesetzlich in der Verordnung (EWG) Nr. 2092/91 (EU-Öko-VO) verankert.

Schlechte Haltungsbedingungen für Tiere sind gleichermaßen ein Ausschlusskriterium für eine Ökovermarktung. Ein Käfigei ist dem Bio-Verbraucher ebenso wenig zumutbar wie ein mit Schädlingsbekämpfungsmitteln gespritzter Apfel. Eine Fokussierung auf die Pflanzenschutzmittel nur aufgrund ihrer besseren analytischen Nachweisbarkeit ist nicht sachgerecht. Diese Positionsbestimmung zu Beginn ist wichtig, um sich nicht dem Trugschluss zu nähern:

\[\text{bio} = \text{rückstandsfrei}\]. Denn dann gälte auch umgekehrt: \[\text{rückstandsfrei} = \text{bio}\].

Auf der anderen Seite sind auch Bio-Lebensmittel von der allgemeinen Umweltbelastung betroffen, so dass es zu geringfügigen Verunreinigungen kommen kann.
Öko-Kontrollstellen können heute auf drei Ebenen mit Rückstandsfunden unzulässiger Pflanzenschutzmittel in Bio-Lebens- und Futtermitteln konfrontiert sein:

- Rückstandsfunde werden durch Dritte (z.B. amtliche Lebensmittelüberwachung, andere Öko-Kontrollstellen) gemeldet.

- Pflanzenschutzmittel-Rückstandsfunde werden von am Kontrollverfahren der eigenen Kontrollstelle teilnehmenden Betrieben und Unternehmen gemeldet oder im Rahmen von Inspektionen festgestellt.

In allen drei Fällen werden Öko-Kontrollstellen und/oder zuständige Behörden tätig. Mit Hilfe dieses Manuals soll eine standardisierte Vorgehensweise bei der Probenahme, der Analytik und der Bewertung von Pflanzenschutzmittelproben ermöglicht werden.

2 Begriffsbestimmungen

Kontaminanten

Kontaminanten sind nach der Verordnung (EWG) Nr. 315/93 alle Stoffe, die einem Lebensmittel nicht absichtlich hinzugefügt werden. Hierbei kann es sich um Umweltkontaminanten handeln, die aufgrund einer Verunreinigung der Umwelt in das Lebensmittel gelangen.

Rückstände

Rückstände als Pestizidrückstände im engeren Sinne sind in der europäischen Rückstandshöchstmengen Verordnung (EG) 396/2005 definiert. Sie resultieren insbesondere aus der Verwendung der entsprechenden Mittel im Pflanzenschutz, in der Veterinärmedizin oder als Biozidprodukte und finden sich in der angewendeten Form oder als Abbauprodukte auf oder in Lebens- und Futtermitteln.

Legaldefinition der Basisverordnung (EG) 178/2002

Falsch-positiv / falsch-negativ

Ein Untersuchungsergebnis ist falsch-positiv, wenn fälschlicherweise ein Rückstand in einer unbelasteten Probe nachgewiesen wird. Umgekehrt ist ein Ergebnis falsch-negativ, wenn keine Rückstände ermittelt werden, obwohl die Probe belastet ist.
Monitoring

Ein Monitoring ist ein System wiederholter Beobachtungen, Messungen und Bewertungen von Gehalten an gesundheitlich nicht erwünschten Stoffen wie Pflanzenschutzmitteln, Stoffen mit pharmakologischer Wirkung, Schwermetallen, Mykotoxinen, [...], die zum frühzeitigen Erkennen von Gefahren für die menschliche Gesundheit unter Verwendung repräsentativer Proben einzelner Erzeugnisse [...] durchgeführt werden.

Pestizid

(von lat. pestis = Seuche, caedere = töten) ist eine aus dem englischen Sprachgebrauch übernommene Bezeichnung für chemische Substanzen, die lästige oder schädliche Lebewesen töten, vertreiben oder in Keimung, Wachstum oder Vermehrung hemmen. (www.wikipedia.de). Der Begriff schließt sowohl Pflanzenschutz- wie auch Schädlingsbekämpfungsmittel (PSM) ein.

Streubereich

Die Schwankung von Messwerten der gleichen Probe liegt laborintern in der Regel zwischen 10 und 30 Prozent. Dieser Bereich wird als analytischer Streubereich oder als Vertrauensbereich bezeichnet. In diesem Bereich liegen 95 % der zu erwartenden Messergebnisse.

Werden Untersuchungsergebnisse von zwei unterschiedlichen Labors verglichen, können sich die Streubereiche addieren. Daher wird bei der Untersuchung von pflanzlichem Probenmaterial im Ergebnisbereich von 0,01–3 mg/kg mit einer Messungenauigkeit (Streuung) von plus minus ca. 50 % gerechnet. (Der bis 2006 verwendete Streubereich betrug 60%.) Bei einem Wert von 0,010 mg/kg (0,01 ppm) markieren die Werte 0,007 mg/kg (Messwert 0,0066 + 50% des Messwertes) und 0,020 mg/kg (Messwert 0,020 – 50% des Messwertes) die Grenzen des analytischen Streubereichs.
3 Rechtliche Rahmenbedingungen der EU-Öko-VO

Die EU-Öko-VO fordert, dass Unternehmen innerbetriebliche Maßnahmen zur Sicherstellung der Öko-Qualität festlegen und umsetzen:

„Bei Aufnahme des Kontrollverfahrens muss das betreffende Unternehmen
- eine vollständige Beschreibung der Einheit und/oder der Anlagen und/oder der Tätigkeit erstellen;
- alle konkreten Maßnahmen festlegen, die auf Ebene der Einheit und/oder der Anlagen und/oder der Tätigkeit zu treffen sind, um die Einhaltung der Vorschriften dieser Verordnung und insbesondere der Anforderungen dieses Anhangs zu gewährleisten.
- die Vorkehrungen zur Minderung des Risikos der Kontamination durch unzulässige Erzeugnisse oder Stoffe sowie die in den Lagerstätten und auf allen Produktionsstufen des Unternehmens vorzunehmenden Reinigungsmaßnahmen festlegen.

Gegebenfalls können die Beschreibung und die Maßnahmen bzw. Vorkehrungen Bestandteil eines Qualitätssicherungssystems des Unternehmens sein.“

(Anhang III „Allgemeine Vorschriften“ Nr. 3 EU-Öko-VO)

Auch die Probenahme und die Analyse auf Pflanzenschutzmittelrückstände im Rahmen der betrieblichen Qualitätssicherung der am Kontrollverfahren teilnehmenden Unternehmen kann Bestandteil solcher „konkreten Maßnahmen“ sein.

Ferner enthält die EU-Öko-VO auch Vorgaben für die Öko-Kontrollstellen zum Umgang mit Probennahme und -analytik:

(Anhang III „Allgemeine Vorschriften“ Nr. 5 EU-Öko-VO)
Schließlich enthält die EN 45011, auf die die EU-Öko-VO verweist, in ihrem Abschnitt 15 folgende Vorgabe für die nach EU-Öko-VO zertifizierten Unternehmen:

| Die Zertifizierungsstelle muss vom Anbieter zertifizierter Produkte verlangen, dass er |
| - Aufzeichnungen über alle an ihn gerichtete Beanstandungen bezüglich der Konformität eines Produktes mit den Anforderungen der betreffenden Norm führt und diese Aufzeichnungen der Zertifizierungsstelle auf deren Verlangen verfügbar macht |
| - bezüglich solcher Beanstandungen und aller an Produkten festgestellten Mängel, die die Erfüllung der Zertifizierungsanforderungen beeinträchtigen, angemessene Maßnahmen einleitet und |
| - die durchgeführten Maßnahmen dokumentiert. |

| Die Öko-Kontrollstelle sollte mit den bei ihr unter Vertrag stehenden Betrieben und Unternehmen eine Informationsverpflichtung bei Rückstandsfunden durch eigene Untersuchungen, Kundenreklamationen und amtliche Kontrollen vereinbaren. |
4 Grundlagen zur Probenahme von Lebens- und Futtermitteln

4.1 Probenahmeanleitungen

Unter dem Suchwort „Probenahme“ findet eine Internetsuchmaschine alleine in deutscher Sprache über 120.000 Einträge. Es handelt sich also um ein sehr kontrovers diskutiertes Thema. Häufig taucht dabei zusätzlich der Begriff der Messungenauigkeit auf. Messungenauigkeit und/oder die Art und Bedingungen der Probenahme sind immer dann in der Diskussion, wenn Messergebnisse anders als erwartet oder erwünscht ausfallen.

Das Lebensmittel- und Futtermittelgesetzbuch (LFGB) vom 1.09.2005 regelt hierzu im § 64:

„(1) Das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit veröffentlicht eine amtliche Sammlung von Verfahren zur Probenahme und Untersuchung von den in § 2 Abs, 2, 3, 5 und 6 genannten Erzeugnissen sowie von mit Lebensmitteln verwechselbaren Produkten.“

Die Rückstands-Höchstmengenverordnung legt fest, dass bei amtlichen Kontrollen von Pflanzenschutzmittelrückständen Proben nach Verfahren zu nehmen sind, die in der Amtlichen Sammlung von Untersuchungsverfahren nach § 64 Abs. 1 des Lebensmittel- und Futtermittelgesetzbuches beschrieben sind.

Hierzu veröffentlicht das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit auf seiner Homepage (www.bvl.bund.de) folgende Erläuterungen:

Sachverständige aus den Bereichen der Überwachung, der Wissenschaft und der beteiligten Wirtschaft entwickeln die Verfahren und bewerten die Leistungsfähigkeit, Zuverlässigkeit und Wiederholbarkeit der Methoden. Sie bestimmen, für welchen Zweck die Methode eingesetzt wird und ob die Methode als Referenz- oder Routineverfahren gelten soll.

[...]
Rechtliche Bedeutung der amtlichen Methodensammlung

Obgleich die amtliche Lebensmittelüberwachung den Bundesländern überlassen ist, wird mit der Amtliche Sammlung die Grundlage für eine bundesweit einheitliche Qualität der Überprüfung geschaffen. Damit wird ein einheitlicher Vollzug der bestehenden Gesetze sichergestellt.

Für die amtliche Probenahme wird man also immer dann auf die Methoden der Amtlichen Sammlung zurückgreifen müssen, wenn die Ergebnisse „gerichtsfest“ sein sollen. Die Methodensammlung für Lebensmittel ist online oder als Loseblattsammlung verfügbar. Der Bezug ist kostenpflichtig (ab ca. 250 Euro zzgl. USt. für Lebensmittel).

http://www.bvl.bund.de/nn_491400/DE/01__Lebensmittel/04__Lebensmittelanalytik/03__Methodensammlung/merthodensammlung_node.html nn=true
4.2 Qualität der Ausgangschargen

Aus der Fülle der Vorschriften kann bereits geschlossen werden, dass die Probenahme ein komplexes Thema ist. Und in der Tat, schon bei der ersten Annäherung an das Thema wird ein Dilemma sichtbar: Soll die Probe die durchschnittliche Qualität der ideal gemischten Ware abbilden, oder die tatsächliche Qualität am Ort der Probenahme?

Dieses Projekt befasst sich seit mehreren Jahren mit der Problematik, dass GVO-Analysen eine erhebliche Messunsicherheit aufweisen bei gleichzeitig hoher Spezifität der Meßmethode. Die KeLDA-Studie hat sich dabei der Frage zugewandt, ob die Ursache für die hohe Fehlerquote möglicherweise in der Inhomogenität der Ausgangsware liegt. Das Ergebnis wird in einem knappen Abstract zusammengefasst [Übersetzung durch den Autor]:

Die Verlässlichkeit von analytischen Untersuchungen wird durch die Unsicherheit der Probenahme stark beeinflusst. Probenahme ist immer eine Fehlerquelle und das Ziel einer „guten“ Probenahmetechnik ist es, diesen Fehler zu minimieren.

... Allgemein wird die Verteilung von GVO-Material innerhalb einer Probe als zufällig angenommen....was jedoch in der Praxis nie verifiziert werden konnte....

[Eine Untersuchung von 15 Lots Soja in jeweils 100 Einzelproben in zeitlicher Reihenfolge ergab:] ...alle diese Lots zeigen signifikante räumliche Strukturen die darauf weisen, dass Zufälligkeit nicht von vorn herein angenommen werden darf.... (http://biotech.jrc.it/home/doc/Abstract_KeLDA_distribution.pdf)
Wenn also für eine Partie eines landwirtschaftlichen Produktes eine Inhomogenität in räumlichen Strukturen angenommen werden muss, dann hat das Konsequenzen für die Zuverlässigkeit der Beurteilungen von komplexen Chargen aufgrund von Messergebnissen. Zu diesen Ergebnissen kommt eine weitere KeLDASTudie.

(http://biotech.jrc.it/home/doc/Modelling_sampling_Nnrandom_Distr.pdf)

Die beiden nachfolgenden Abbildungen sind dieser Arbeit entnommen.

Abbildung 1: Abhängigkeit der Messwerte von der Anzahl der Primärproben

Abbildung 2: Abhängigkeit der Messwerte vom Heterogenitätsgrad

Aus Abbildung 1 und 2 ergeben sich wichtige Erkenntnisse:

Wählt man die Anzahl der Primärproben zu klein, so wird die Fehlerwahrscheinlichkeit bezogen auf die durchschnittliche Qualität erheblich anwachsen. Ist die Anzahl Primärproben ausreichend, so wird das Ergebnis hoch signifikant sein für die Durchschnittsbelastung,
falschnegative Ergebnisse sind zunehmend unwahrscheinlich. Aber die punktuelle Belastung kann gleichwohl völlig abweichen.

In Fällen, in denen man von einer hohen räumlichen Inhomogenität ausgehen muss, können also sowohl positive wie negative Ergebnisse nicht repräsentativ sein. Noch deutlicher werden PAOLETTI et al, 2002: Sie kommt zum Ergebnis, dass „allgemein Verunreinigungen in Schüttgutpartien nicht zufällig verteilt sind und deshalb die gängigen Annahmen für Probenahme zu Fehlern führen“.

Die genannten Ergebnisse beziehen sich auf GVO-Verunreinigungen in Schüttgütern. Es handelt sich also um eine spezifische Qualität der Verunreinigungen (wie auch der Nachweismethoden). Trotzdem gelten die Aussagen über räumliche Inhomogenitäten in Schüttgütern auch für andere Verunreinigungen, die zufällig und unbemerkt eingetragen werden. Zum Beispiel für den Eintrag geringer Mengen konventionelles Getreide in Biogetreide oder für andere schüttfähige landwirtschaftliche Erzeugnisse. Immer dann, wenn die Abweichung von der allgemeinen Qualität an diskrete Partikel gebunden ist, können diese in räumlichen Strukturen auftreten.

Der Frage nach der Variabilität von Pflanzenschutzmittelrückständen aus aktiver Anwendung geht eine Veröffentlichung in „The EFSA Journal (2005) 177, 1-61“ mit dem Titel: „Opinion of the Scientific Panel on Plant health, Plant protection products and their Residues on a request from Commission related to the appropriate variability factor(s) to be used for acute dietary exposure assessment of pesticide residues in fruit an vegetables“ nach.

Die Studie kommt zu dem Ergebnis, dass die Rückstandsmenge von Pflanzenschutzmitteln in behandeln (also konventionellen) landwirtschaftlichen Kulturen im verzehrten Erzeugnis selbst bei guter fachlicher Praxis immer noch um den Durchschnittsfaktor 3,6 schwankt.
Aufgrund der Inhomogenität der Rohstoffe wird also eine Belastung mit Pestizidrückständen praktisch nie an jeder Stelle gleich hoch sein. Zonen mit deutlicher Belastung können neben Zonen liegen, in denen nichts nachweisbar ist.

Abhilfe würde eine gleichmäßige Vermischung der Rohstoffe schaffen, was in der Praxis jedoch schwierig bis unmöglich ist. Eine Lieferung Getreide mit 25 Tonnen homogen zu mischen, ist technisch schon fast unmöglich, praktisch werden solche Partien so gut wie nie gemischt.

Bei der Probenahme von Feststoffen ist zu berücksichtigen: Probenahmeverfahren, die darauf abzielen, ein möglichst repräsentatives Durchschnittsmuster als Mischprobe zu liefern, ergeben häufig ein falsches Bild über die tatsächliche Belastung an einem spezifischen Ort.

Bei Flüssigkeiten in Tanks kann in der Regel eine bessere Homogenität erwartet werden.

4.3 Art der Probe und Nachweismethoden

Ideale Untersuchungen sind zerstörungsfreie Untersuchungen an der Gesamtcharge, beispielsweise eine Füllmengenkontrolle per Inprozesswaage oder eine Fremdkörperdetektion durch Metalldetektoren oder Röntgenstrahlen. 100% der Charge können ohne Beeinträchtigung die Messstelle durchlaufen. Das Ergebnis liefert sowohl eine exakte Aussage über die Gesamtmenge als auch über das Einzelgebinde, das dann aufgrund abweichender Messwertes sofort ausgesondert werden kann.

Auch für bestimmte Untersuchungen auf Kontaminationen können solche Methoden angewandt werden, zum Beispiel die Untersuchung auf fluoreszierende Schimmelpilzprodukte bei Trockenobst oder Analysen mittels Photometrie oder im nahen Infrarotbereich. Im Bereich der chemischen Analytik sind zukünftig im Bereich von hochreaktiven
und selektiven Sondenmethoden mittels Mikrochips Fortschritte zu erwarten. Schwierig wird es aber dort, wo die Probe nicht mehr 100 % der Grundmenge darstellt, sondern selektiv genommen und repräsentativ für die Gesamtmenge gewertet wird. Deshalb muss der Blick zu den Rahmenbedingungen gehen.

Für die Durchführung von Verdachtsproben im Zusammenhang mit der EU-Öko-VO ist die Anwendung der im Projekt 02OE215 recherchierten, amtlichen Probenahmeverordnungen nicht sinnvoll.
5 Auswahl geeigneter Untersuchungslaboratorien

Nachfolgend werden Mindeststandards genannt, die ein Untersuchungslabor erfüllen muss:

5.1 Akkreditierung nach ISO 17025

Die Untersuchungsstellen müssen über eine gültige Akkreditierung nach EN /ISO/IEC 17025 für Lebens- und Futtermittel verfügen. Mindestens für folgende Analyseverfahren im Bereich der Pflanzenschutzmittel muss eine Akkreditierung vorliegen:

- Pestizid-Multimethode
 (z.B. nach DFG S 19; DIN EN 12393-1, DIN EN 12393-2, DIN EN 12393-3, ASU L-00.00-34)
 Die Methode kann bis zu 500 Wirkstoffe von Pflanzenschutz-, Schädlingsbekämpfungs- und Lagerschutzmitteln in einem Analysegang erfassen.
 Multiverfahren mit verschieden kombinierbaren Extraktions-, Reinigungs- und Bestimmungsmodulen.
• **Gruppenmethode: Dithiocarbamate**
 (z.B. nach DFG S 15; DIN EN 12396-1, DIN EN 12396-2, DIN EN 12393-3, ASU L 00.00-35)
 Fungizide (z.B. Ferbam, Mancozeb, Maneb, Nabam, Propineb, Thiram, Zineb)
 UV-Fotometrie oder Headspace-GC

• **Gruppenmethode: Benzimidazole**
 (z.B. nach DFG 378)
 Fungizide (z.B. Carbendazim, Benomyl, Thiabendazol)
 LC-MS –Kopplung

• **Anorganisches Gesamtbromid**
 (z.B. nach DFG S 18, EN 13191-2, ASU L 00.00-36)

• **Individuelle Detektionsbausteine: LC-MS/MS**
 Zur Bestimmung von Wirkstoffen, die nicht mit einer der o.g. Methoden analysierbar sind, mindestens jedoch für die Gruppen: Chloromequat/Mepiquat, Phenylharnstoffderivate, Methylcarbamate.
 Flüssigchromatographie mit Massenspektrometer-Kopplung, Identifizierung und Quantifizierung von Rückständen in stark Matrix belasteten Proben.

Empfehlenswert:

• **QuEChERS - Methode "Quick-Easy-Cheap-Effective-Rugged-Safe" (Mini-Multimethode)**
 Das Analyseverfahren ist eine Kombination aus DFG S 19 und der LC-MS/MS Methode jedoch mit einem geringeren Wirkstoffspektrum (www.quechers.com). Dieses preiswerte Verfahren ist noch nicht bei allen Matrices (Lebens- und Futtermittel) einsetzbar.

Es sollte darauf geachtet werden, dass die benötigten Prüfmethoden in der Akkreditierungsurkunde des Labors aufgeführt werden bzw. als Unterauftrag an ein entsprechend akkreditiertes Prüflaboratorium vergeben sind. Letzteres muss dann im Laborgutachten vermerkt sein.

5.2 Liste der Wirkstoffe

Bei Multimethoden und bei Gruppenmethoden sind bei der Laborauswahl auch die Listen der Wirkstoffe zu bewerten.

Das Labor sollte zu jedem Analysenbefund eine Liste der Wirkstoffe und Bestimmungsgrenzen vorlegen, die mit den jeweiligen Methoden routinemäßig untersucht und bestimmt werden. Dabei kommt es darauf an, dass diese Stoffe tatsächlich ausgewertet werden. Es geht nicht um die theoretische Leistungsfähigkeit der Methode.

Anhand der Listen können die analytischen Leistungen der Labore verglichen werden. Außerdem kann damit auch noch nach längerer Zeit nachvollzogen werden, ob ein bestimmter Wirkstoff mitbestimmt wurde.

5.3 Teilnahme an Ringversuchen

Das Labor sollte Auskunft darüber geben, ob und in welchem Umfang es in den vergangenen Jahren an für den Untersuchungsbereich relevanten Ringversuchen teilgenommen hat. In Ringversuchen können die Labore untereinander ihre Leistungsfähigkeit vergleichen und die Ergebnisse für Qualitätsverbesserungen nutzen.

Für die oben aufgeführten Methoden sollte das Labor jährlich mindestens einmal an Ringversuchen teilnehmen.
5.4 Beratung und Service

Neben der reinen Labor- und Gutachtentätigkeit werden die "Servicefaktoren" immer wichtiger:

- Tatsächliche durchschnittliche Dauer einer Untersuchung
- Aufbau und Verständlichkeit der Berichte
- Beurteilung des Analysebefundes im Hinblick auf mögliche Zweifel an der Öko-Qualität des untersuchten Erzeugnisses
- Beratung, wie mit einem positiven Befund umzugehen ist
- Aktive Information der Auftraggeber, falls dem Labor neue Risiken für die untersuchte Produktgruppe bekannt werden

Zwischen Unternehmen, Untersuchungslaboratorium und Öko-Kontrollstelle sollte die Beurteilung von Analysenbefunden für die untersuchten Bio-Produkte abgestimmt werden. So wird vermieden, dass das Labor Befunde im Hinblick auf die Anforderungen der EU-Öko-VO fehlerhaft bewertet.

Gerade dann, wenn Rückstände gefunden werden, ist ein fachlicher Rat für die Betriebe und Kontrollstellen und -behörden unverzichtbar. Ist dann kein Ansprechpartner zu finden oder dieser nicht zu einer hilfreichen Beratung in der Lage, sind Fehleinschätzungen kaum zu vermeiden.

Hilfreiche Empfehlungen zur richtigen Auswahl eines Labors geben auch die Öko- oder Branchenverbände. Der Preis oder die Schnelligkeit einer Analyse lassen Schlüsse auf die Qualität des Untersuchungsumfangs zu.
6 Risikoorientierte Durchführung von Rückstandsuntersuchungen im Kontrollverfahren nach EU-Öko-VO

Zu Beginn der Zusammenarbeit zwischen einem Unternehmen und einer Öko-Kontrollstelle sollten die im Unternehmen durchgeführten Maßnahmen der innerbetrieblichen Qualitäts sicherung zusammen mit der Kontrollstelle gesichtet, erörtert und im Hinblick auf die Unternehmensgröße, die Art der vermarkteten Öko-Erzeugnisse und die Bezugsquellen für die Rohstoffe und weitere Faktoren bewertet werden.

Diese Beurteilung bezieht sich stets auf den Einzelfall. Bei kleinen, handwerklichen Verarbeitungsbetrieben wird meist auf eigene Rückstandsuntersuchungen verzichtet werden können.

Wenn die Maßnahmen der unternehmensinternen Qualitätssicherung plausibel erscheinen, ist nur im Verdachtsfall eine Probenahme und -analyse durch die Öko-Kontrollstellen erforderlich. Wichtig ist allerdings, dass die zuständige Öko-Kontrollstelle mit den bei ihr unter Vertrag stehenden Betrieben und Unternehmen eine Informationsverpflichtung bei Rückstandsfunden vertraglich vereinbart.

In Fällen, in denen die unternehmensinterne Qualitätssicherung nicht als ausreichend eingestuft wird, empfiehlt es sich, weitergehende Maßnahmen zu besprechen und zu vereinbaren.
Allerdings sollte die Bedeutung der Probenahme und -analytik auch nicht überbewertet werden. Häufig wird nämlich übersehen, dass auch die Ergebnisse von Rückstandsuntersuchungen kritisch zu hinterfragen sind. Sowohl falschpositive Ergebnisse (Rückstände werden gefunden, eine Absicherung kann das nicht bestätigen) als auch falschnegative Resultate (Rückstände sind vorhanden, werden aber nicht erkannt) kommen in der Praxis (siehe 4.2) vor und können zu fehlerhaften Rückschlüssen auf das Erzeugnis und/oder die Konformität seiner Erzeugung führen. Außerdem können aus richtigen Einzelergebnissen falsche Schlüsse auf die Gesamtqualität der Ausgangscharge gezogen werden.

6.1 Auswahl der zu untersuchenden Produkte

Untersuchungen auf Pflanzenschutzmittel-Rückstände sind vor allem dort erforderlich, wo Unternehmen mit „kritischen Produkten“ umgehen oder angebotene Partien aus dem üblichen Raster herausfallen.

Unabhängig davon haben erfahrene Einkäufer oft ein Gespür, bei welchen Partien etwas nicht stimmen könnte. Häufig sind dies relativ günstig angebotene Partien von unbekannten Lieferanten oder von Lieferanten, die bereits in der Vergangenheit negativ aufgefallen sind. Oder die Qualität einer Ware, beispielsweise bei Obst, ähnelt mehr konventionellen Erzeugnissen als Ökoprodukten aus der gleichen Region. Solche „Indizien“ sind ein Anlass, entsprechende Partien rückstandsanalytisch zu untersuchen (vergl. hierzu auch Tabelle 1).

6.2 Unternehmensinterne Qualitätssicherung

Im Folgenden soll ein Auswahlverfahren für Planproben im Rahmen der unternehmensinternen Qualitätssicherung von Unternehmen beschrieben werden, das den Anspruch an ein geplantes, zielgerichtetes und risikoorientiertes Verfahren erfüllt.

Tabelle 1: Faktoren, die den Untersuchungsumfang beeinflussen

<table>
<thead>
<tr>
<th>Faktoren für einen erhöhten Untersuchungsumfang</th>
<th>Faktoren für einen geringeren Untersuchungsumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuer, bislang unbekannter Lieferant ist in der Lage kurzfristig hohe Liefermengen bereit zu stellen.</td>
<td>Ware aus bekannten Öko-Betrieben der Region.</td>
</tr>
<tr>
<td>Ungewöhnliches Preis-Leistungsverhältnis. Hohe Qualität wird zu einem vergleichsweise günstigen Preis angeboten.</td>
<td>Lieferant ist ein spezialisierter Öko-Betrieb, der seit mehreren Jahren im Vertragsanbau mit dem Abnehmer zusammenarbeitet.</td>
</tr>
<tr>
<td>Relative Knappheit des Produktes am Markt, z.B. durch Ernteausfall oder außerhalb der Saison.</td>
<td>Aufgrund der Marktsättigung setzt der Lieferant Teile seiner Öko-Produktion auf dem konventionellen Markt ab.</td>
</tr>
<tr>
<td>Produkte des Lieferanten sind in der Vergangenheit häufiger negativ aufgefallen. (Anhaltspunkte aus Monitoringprogrammen).</td>
<td>Lieferant ist seit vielen Jahren in der Branche als zuverlässig und qualitätsbewusst tätig. Seine Betriebsstruktur und durchschnittliche Erträge sind bekannt.</td>
</tr>
<tr>
<td>Lagerung in konventionellem Lager (Kontamination mit Lagerschutzmitteln möglich)</td>
<td>Verkauf direkt nach der Ernte ohne Zwischenlager.</td>
</tr>
</tbody>
</table>
6.2.1 Einteilung des Rohwarensortiments in Risikoklassen

Das Rohwarensortiment wird einer ABC-Analyse, von A = hohes Risiko bis C = geringes Risiko, unterzogen.

In der Gruppe B muss sich die Mehrzahl (60 – 80 %) der Produkte befinden, sie bildet also das für das Unternehmen durchschnittliche Risiko ab. In der Gruppe A finden sich die Produkte, die gegenüber der Gruppe B eine erhöhte Anzahl an Risikofaktoren besitzen. In die Gruppe C gehören Produkte, die entweder unterdurchschnittliche Risiken haben oder wo erleichternde Faktoren (Tabelle 1) hinzukommen. Trifft ein Faktor aus der Tabelle 1 für alle Produkte zu (z. B. alles Importprodukte oder alles Bioprodukte), so kann dieser für die ABC-Analyse nicht bewertet werden. Erst für die Frage nach der durchschnittlichen Untersuchungsfrequenz wird dieser Faktor wieder relevant.

Bei der Bewertung eines Analysenplanes ist zu beurteilen, inwiefern das Risiko des Auftretens von Rückständen miteinbezogen wurde.

6.2.2 Beispiel: Erstellung eines Analysenplanes

Die Erstellung eines Analysenplanes mit Berücksichtigung der ABC-Analyse soll anhand des folgenden Beispiels verdeutlicht werden.

Ein klassischer Biobetrieb im Trockensortiment mit ca. 750 Rohstoffeingängen pro Jahr in Chargengrößen zwischen 50 kg und 25 Tonnen. Die Importrate beträgt 60 % (Umsatz), 15 % der Artikel stammen ausschließlich aus dem Inland. Das Rohwarensortiment umfasst 400 Einkaufsartikel. Werden die verschiedenen Einkaufssortierungen herausgerechnet bleiben noch 80 Rohstoffgruppen. Diese werden einer ABC-Analyse unterzogen:

Vorgruppierung:

Da es sich ausschließlich um Bioprodukte handelt, wird dies nicht als Faktor gewertet, der die Anzahl der Untersuchungen reduziert. Das Unternehmen arbeitet nach einem Qualitätsmanagementsystem (z. B. dem International Food Standard IFS), alle Lieferanten werden regelmäßig bewertet und freigegeben. Auch dieser Faktor wird nur dann berücksichtigt, wenn einzelne Lieferanten für eine überdurchschnittliche Produktsicherheit bekannt sind.
Verteilung:

Aufgrund der hohen Importquote werden alle Importprodukte zunächst in die Gruppe B sortiert. Alle Inlandsprodukte kommen in die Gruppe C, so dass zunächst eine Verteilung von 0:85:15 entsteht.

Im nächsten Schritt wird die Gruppe C auf risikoerhöhende Faktoren untersucht. Anhand von Merkmalen aus der Tabelle 1 ergänzt um betriebsinterne Risikobetrachtungen werden alle Rohstoffe in die Gruppe B verschoben, die ein zusätzliches Risiko tragen. Bei besonders hohem Risiko kann auch ein Verschieben in die Gruppe A notwendig werden.

Ergebnis der Zuordnung:
Klasse A → 10 % (8 Produkte) mit erhöhtem Risiko
Klasse B → 75 % (60 Produkte) mit durchschnittlichem Risiko
Klasse C → 15 % (12 Produkte) mit reduziertem Risiko

Aufgrund der Risikoabschätzung entscheidet sich das Unternehmen, den Risikoklassen folgende Gewichtungsfaktoren zuzuordnen.

Klasse A wird aufgewertet mit → Untersuchungsfaktor 2
Klasse B bleibt gleich in der Bewertung mit → Untersuchungsfaktor 1,
Klasse C wird abgewertet mit → Untersuchungsfaktor 0,5.

Analysenumfang:

Tabelle 2 zeigt, wie die Anzahl der Analysen für die einzelnen Risikoklassen berechnet wird:

<table>
<thead>
<tr>
<th>Risikoklasse</th>
<th>Anzahl Artikel</th>
<th>Prozent</th>
<th>Faktor F</th>
<th>Artikel x F</th>
<th>Untersuchungen (gerundet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>10 %</td>
<td>2</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>60</td>
<td>75 %</td>
<td>1</td>
<td>60</td>
<td>29</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>15 %</td>
<td>0,5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Summe</td>
<td>80</td>
<td>100%</td>
<td></td>
<td>82</td>
<td>40</td>
</tr>
</tbody>
</table>

In einem differenzierteren Verfahren können zusätzlich die voraussichtliche Anzahl der Wareneingangschargen sowie die Chargenmengen gewichtet werden. Es wird zu anderen Verhältnissen führen, wenn z. B. die Artikel der Risikoklasse A nur selten eingekauft werden, die Gruppe C dafür mit mehreren Chargen pro Woche. Dann kann es sinnvoll sein, bei C sehr viel mehr Untersuchungen zu machen als bei A.

6.2.3 Monitoringsysteme

Da die besondere Sorgfaltspflicht gegenüber möglichen Rückständen die gesamte Biobranche betrifft, liegt es nahe, firmenübergreifende Monitoringsysteme zu etablieren; also gemeinschaftliche Verfahren zu Probenauswahl, Probenahme, Analyse und Auswertung von Rückstandsfunden.

Für Öko-Kontrollstellen und zuständige Behörden bietet es sich an, zur Identifikation „kritischer Produkte“ Ergebnisse aus Monitoringprogrammen zu nutzen.

6.3 Probenahme und -analytik durch Öko-Kontrollstellen

Probenahmen durch Inspekturinnen und Inspektoren der Öko-Kontrollstellen betreffen in der Regel Lebens- sowie Futtermittel sowie deren Ausgangs- und Grundstoffe mit Herkunft aus oder Verwendung im ökologischen Landbau. Es handelt sich also in der Regel um landwirtschaftliche Erzeugnisse.

Im Kontrollverfahren gemäß der EG-Öko-Verordnung sind Probenahmen in der Regel gezielte Verdachtsproben. Um ein Bild zu verwenden: Bei dieser Art der Überwachung geht nicht darum, die gefahrenen Geschwindigkeiten aller Fahrzeuge in einer Stadt zu messen, so dass gleichzeitig Aussagen darüber möglich sind, welche Durchschnittsgeschwindigkeiten gefahren werden und wie viele Autofahrer sich nicht an die Vorschriften halten. Es geht ganz konkret darum, an kritischen Punkten die Geschwindigkeit von einzelnen Autofahrern zu messen (risikoorientiertes Vorgehen), unabhängig davon, ob sich die Gesamtanzahl der Autofahrer in dieser Stadt statistisch an die Vorschriften halten oder nicht.

Bei Verdacht auf den Einsatz von nicht konformen Mitteln, Vermischungen oder Kontaminationen werden Verdachtsproben (gezielte Einzelproben) genommen.

6.4 Vorbereitung

Eine Öko-Kontrollstelle wird üblicherweise Verdachtsproben durchführen. Die Probenahme und Analyse soll also Antwort auf eine ganz konkrete Fragen geben. Für die Vorbereitung sollte daher möglichst präzise beschrieben werden, worin der Verdacht besteht, damit die Probenahme gezielt durchgeführt werden kann.
Es kann sinnvoll sein, auch das Labor bereits im Vorfeld über den Verdacht zu informieren, damit dieses die Untersuchungsmethode darauf ausrichten kann.

Eine gute Vorbereitung der Probenahme durch die Kontrollstelle hilft dem Probenehmer den Focus auf die vermutlich wesentlichen Punkte zu lenken.

6.5 Probenahme

Beispiel 1: Verdacht einer Kontamination einer Bio-Getreide-Partie mit konventionellem Getreide bei der Zwischenlagerung in einem Lagerhaus

möglichst aus dieser Teilpartie gezogen werden, also entweder ganz zu Beginn des Entladevorgangs oder ganz am Ende.

Beispiel 2: Verdacht auf die Anwendung von richtlinienwidrigen Mitteln im Weinbau

In beiden Fällen wird deutlich, dass die Entnahme der Einzelproben gezielt erfolgen muss. Durchschnittsproben, die mögliche Inhomogenitäten ausgleichen, wären für den Zweck nicht geeignet.

6.6 Probenahmeprotokoll

Das Probenahmeprotokoll muss folgende Mindestinformationen enthalten:

a) Ort, Zeit und Datum der Probenahme und Probenehmer
b) Genaue Bezeichnung der Probe einschl. Los-Nr. / Chargen-Nr.
c) Genaue Beschreibung der Bedingungen der Probenahme
d) Angabe der zu analysierenden Pflanzenschutzmittel, soweit bekannt
e) Verpackung der Probe
Es empfiehlt sich, dem Protokoll eine Kopie des Etiketts bzw. der Begleitpapiere beizufügen. Auch eine photographische Dokumentation mit Hilfe einer Digitalkamera ist sinnvoll.

Das Protokoll sollte einen Hinweis zur Zweitprobe enthalten (vergl. Kap. 6.6) und wird von der Inspekturin/ dem Inspekteur und vom Verantwortlichen des Unternehmens unterschrieben.

Man kann auf dem Formular einen Teil mit Angaben zur Probenahme vorsehen, der per Unterschrift von dem Unternehmen bestätigt wird. Die weiteren Teile werden später ausgefüllt und enthalten Informationen für kontrollstelleninterne Zwecke oder für das Labor.

6.7 Zweitprobe

Das Unternehmen hat als Eigentümer der Ware ein Recht auf die Zurücklassung einer Zweitprobe, die erforderlichenfalls für eine eigene Analyse verwendet werden kann. Wenn das Unternehmen nicht ausdrücklich per Unterschrift auf dem Probenahmeprotokoll auf die Zweitprobe verzichtet, muss die Einzel- oder Mischprobe geteilt werden. Eine der beiden Teilproben bleibt als Zweitprobe beim Unternehmen.

Deshalb ist es sehr viel mehr zu empfehlen, die Probemenge so zu wählen, dass eine ausreichende Rückstellprobe für Bestätigungs- und Schiedszwecke verfügbar bleibt. Auf dem Probenahmeprotokoll wird vermerkt, dass ein Rückstellmuster für Bestätigungs- und Schiedszwecke beim Probenehmer oder seinem Beauftragten für 6 Wochen (empfohlen 6 Monate) verfügbar ist.

Es ist empfehlenswert, immer eine Zweitprobe zu hinterlassen!
6.8 Versand und Laborbeauftragung

Für die Verpackung von Proben haben sich dicht schließende beschichtete Kunststoff-Probenbeutel bewährt, die sich nur durch Zerstörung des Beutels öffnen lassen. Damit kann ein späteres Austauschen des Probenahmematerials ausgeschlossen werden. Solche Tüten sind über den Spezialfachhandel (http://www.debatin.de/de/i_prod_pg3_1.html) oder den Laborfachhandel erhältlich. Vorsicht ist bei wasserhaltigen Frischproben (Frischware, Backwaren u. ä) geboten: hier kann die Probe im Beutel in kurzer Zeit verschimmeln. In diesen Fällen empfiehlt sich ein atmungsaktiver Probenbeutel oder ein Kühlversand.

Die Beauftragung des Labors muss schriftlich erfolgen. Um den Untersuchungsbefund auswerten zu können, muss sich das Ergebnis eindeutig auf die gezogene Probe beziehen. Deshalb gilt auch hier, wie oben gesagt, die größtmögliche Präzision. Auch wenn die Probe anonymisiert (in Bezug auf die Herkunft) eingereicht wird, sollte die Probenbezeichnung mindestens enthalten:

- genaue Bezeichnung der Probe (Beispiel: die Bezeichnung Apfel sollte um die Sorte ergänzt werden oder die Herkunft oder andere indentifizierbare Eigenschaften),
- Probenmenge,
- Probenummer, Chargennummer
- Art der Untersuchung, oder gesuchter Stoff oder Stoffgruppe
- ggfs. Angaben zur Bearbeitungszeit,
- Ansprechperson für Rückfragen des Labors,
- Hinweis, dass ein Rückstellmuster und Homogenisat für Bestätigungs- und Schiedszwecke vom Labor für zwei Monate (empfohlene Richtzeit) aufbewahrt werden soll und evtl. vom Auftraggeber abgerufen werden kann.
7 Bewertung von Analyseergebnissen

Das nachfolgend beschriebene Bewertungsverfahren kann für Untersuchungsbefunde aus

- der unternehmensinternen Qualitätssicherung
- Monitoringsystemen
- amtlichen Kontrollen sowie
- von Öko-Kontrollstellen durchgeführten Probenahmen und Analysen

angewendet werden.

Abbildung 1 skizziert den Ablauf des Bewertungsverfahrens.

Die mit KF 1 bis KF 4 bezeichneten Kontrollfragen sollen die typischen Fragen für den einzelnen Teilschritt des Bewertungsverfahrens abbilden.

KF 1: Welche Informationen lassen sich aus dem Untersuchungsbefund entnehmen?

- Name und Anschrift des Untersuchungslabors
- Akkreditierung und/oder öffentliche Bestellung als Sachverständige
- Probenart, -menge und -bezeichnung
- nähere Angaben zur Probe, zur Verpackung, zum Probenahmeort
- Untersuchungsmethode, Verfahren, Technik (GC, HPLC, LC-MS u. a.)
- Ergebnis der Untersuchung, Einheit (mg/kg, ppb usw.), Liste aller untersuchten Stoffe oder Nennung von Gruppen (Organophosphor, Organochlor usw.), Angaben “n. n.” (nicht nachweisbar) oder “n. d.” (nicht durchgeführt) oder “> MRL” (Grenzwert der Rückstands-Höchstmengenverordnung überschritten) oder andere Angaben
- Ggf. Beurteilung des Untersuchungsergebnis
Abbildung 3: Bewertungsverfahren für Untersuchungsbefunde
KF 2: Welche Gesetze, Richtlinien oder private Standards etc. lassen sich anwenden?

- Pflanzenschutz-, Schädlingsbekämpfungs- und Lagerschutzmittel → Rückstands-Höchstmengenverordnung, Diät-VO, BNN-Orientierungswerte für chemisch synthetische Pflanzenschutz-, Lagerschutz- und Schädlingsbekämpfungsmittel

Die Rückstands-Höchstmengenverordnung und die Diätverordnung können unter www.bmelv.de abgerufen werden. Die BNN-Orientierungswerte finden sich unter www.n-bnn.de in der Rubrik „Downloads“.

Ferner stehen auch datenbankgestützte Recherchemöglichkeiten zur Verfügung, z.B. die CD „Grenzwerte“ (ISBN 3-609-78280-3, ECOMED-Verlag)

KF 3: Gibt es Anlass für einen begründeten Verdacht?

- Werden einschlägige gesetzliche Grenzwerte überschritten, so dass die Verkehrs-fähigkeit nicht mehr gegeben ist?

 In diesem Fall verliert das Erzeugnis seine Qualifizierung als Lebens- oder Futtermittel und fällt nicht mehr unter die Kennzeichnungsvorschriften der EG-Öko-Verordnung. Es besteht eine Informationsverpflichtung an die amtliche Lebensmittelsicherheitsbehörde oder die Futtermittelsicherheitsbehörde.

- Werden die privatrechtlichen Standards oder Auswerteschema überschritten, so kann dies einen begründeten Verdacht auslösen. Bei der Bewertung ist der so genannte „Streubereich“ von Analyseergebnissen zu berücksichtigen.

Die Überschreitung des BNN-Orientierungswertes für Pflanzenschutz-, Lagerschutz- und Schädlingsbekämpfungsmittel (Messwert minus 60 % Streubereich [Änderung auf 50 % in Vorbereitung] > 0,01 mg/kg) gilt als ein Hinweis auf die Nicht-Einhaltung der Vorschriften der EU-Öko-VO.

Jedoch können Werte auch unterhalb des BNN-Orientierungswert einen begründeten Verdacht auslösen. Dies soll an einem Beispiel verdeutlicht werden:
Beispiel: Rückstandsfund in Bio-Streuobstsaft

In einem 25.000 Liter-Tank Bio-Streuobstsaft werden 0,01 mg/kg eines gängigen Pflanzenschutzmittels im Obstbau gefunden. Aufgrund der homogenen Durchmischung kann hier ein begründeter Verdacht bestehen, dass konventionelles Obst als Biostreuobst angeliefert wurde. Für eine zufällige und unvermeidbare “ubiquitäre” Verunreinigung widerspricht der gefundene Wert den Erfahrungen. Die Öko-Kontrollstelle der Mosterei muss hier die Zugänge und Warenflüsse der Verarbeitung prüfen.

KF 4 Einzelfallentscheidung

• Es ist zu entscheiden, ob ein Verdachtsfall nach Anhang III Nr. 9 vorliegt und ob und welche weiteren Ermittlungen der beteiligten Öko-Kontrollstellen erforderlich sind. (vergl. Kap. 8).

• Auch eine Wiederholung der Laboranalyse kommt in Frage. Da sich zwei widersprechende Befunde nicht gegenseitig aufheben, sollte gefordert werden, dass dafür eine Erklärung gefunden werden kann. Mögliche Ursachen sind: Laborfehler, Verwechslung der Proben, Inhomogenitäten der Charge oder Verunreinigungen bei der Probenahme und andere.

Um einen Laborfehler auszuschließen, sollte in einem ersten Schritt immer das Homogenisat, das im Labor aufbewahrt werden sollte, nochmals analysiert werden. Die Analyse der Zweitprobe, die beim Unternehmens verblieben ist, gibt dagegen Aufschluss über die Verteilung des Rückstandes innerhalb der Partie. Diese Information kann im Rahmen der weiteren Ermittlungen hilfreich sein.
8 Maßnahmen bei nachgewiesenen Rückständen in Ökoprodukten

Über den Umgang mit Öko-Produkten, bei denen Rückstände von Pflanzenschutzmitteln nachgewiesen wurden, herrscht häufig große Unsicherheit. Deutlich wird dies an den beiden folgenden Fallbeispielen:

Fall 1:

Fall 2:

Erzeugnisse eines bestimmten Lieferanten aus einem Nicht-EU-Land fallen immer wieder durch verschiedene Rückstandsbefunde auf. Das Bild ist uneinheitlich. Es sind mehrere Kontrollstellen beteiligt, im Drittland sowie bei verschiedenen Importeuren und Verarbeitern in der EU. Da kein eindeutiger Befund zu erreichen ist, drehen sich die Maßnahmen im Kreise. Es kommt zu keiner Sperrung oder Aberkennung, obwohl der Verdacht auf eine Untermischung von konventioneller Ware fortbesteht. Die Situation bleibt unklar und letztlich unbefriedigend, eine Verbesserung kann nicht erreicht werden.

Diese beiden Beispiele liegen zwischen Überreaktion und Verschleppung und markieren das Feld der möglichen Reaktionen aller Stellen, die aufgrund von indirekten Beweisen Sanktionen ergreifen müssen. Kontrollstellen wie zuständige Behörden sind dabei an das geltende Recht gebunden, wenn sie nicht beim ersten Widerspruchsverfahren unterliegen wollen. Den rechtlichen Rahmen gibt die EU-Öko-VO in Artikel 9 Nr. 9 vor:
„Die Kontrollbehörden und die Kontrollstellen müssen:

- bei Feststellung eines offenkundigen Verstoßes oder eines Verstoßes mit Langzeiteinwirkung dem betreffenden Unternehmen die mit Hinweisen auf den ökologischen Landbau verbundene Vermarktung von Erzeugnissen für die Dauer einer mit der zuständigen Behörde des Mitgliedstaats zu vereinbarenden Frist untersagen."

Analoges regelt der Artikel 10 für die Verwendung des Konformitätsvermerkes.

Es wird aber häufig schwierig sein, eine Unregelmäßigkeit oder einen Verstoß festzustellen, wenn nur eine Rückstandsuntersuchung vorliegt. Ohne eine gesicherte Feststellung ist jedoch keine Entfernung des Öko-Hinweises von der betroffenen Partie möglich.

Um beispielsweise bei Rückstandsfinden weitere Ursachenrecherchen zu ermöglichen, sieht die EU-Öko-VO im Anhang III “Allgemeine Vorschriften” Nr. 9 unter der Überschrift “Erzeugnisse, die unter dem Verdacht stehen, die Anforderungen dieser Verordnung nicht zu erfüllen”, ein wirksames Mittel für Öko-Kontrollstellen und zuständige Behörden vor: **die Sperrung bei Verdacht.**

Wenn sich wie in unserem Falle aus Rückstandsuntersuchungen ein begründeter Verdacht herleiten lässt, dass irgendwo zwischen Aussaat und Probenahme eine Unregelmäßigkeit oder ein Verstoß stattgefunden haben muss, dann genügt es, den Betrieb über diesen Verdacht zu informieren. Der Betrieb selbst muss dann so lange die Vermarktung der verdächtigen Partien aussetzen, bis er den Verdacht bestätigen oder widerlegen kann. Erst wenn sich der Verdacht nicht bestätigt, muss die Sperrung aufgehoben werden.

Zusätzlich ermächtigt dieser Passus im Anhang III der EG-Öko-Verordnung die Kontrollstelle, die verdächtigen Chargen zwangsweise zu sperren, wenn der Betrieb die freiwillige Sistierung nicht durchzuführen gewillt ist. Für die Anwendung dieser Verdachtssperre ist es nicht erforderlich, dass die gesamte Partie per repräsentativer Probenahme und Analyse an
jeder Stelle durchschnittlich diese Rückstände aufweist. Es genügt, wenn **an einer Stelle der Verdacht begründet ist.***

Gleichzeitig muss bei diesem schweren Eingriff in die Eigentumsrechte des Unternehmens die Verhältnismäßigkeit gewahrt bleiben. Aus geringen Rückständen einen Generalverdacht herleiten zu wollen, der dann zu einem defacto-Verwendungsverbot für die Ware führt, wäre unverhältnismäßig und rechtlich problematisch. Er würde mit Sicherheit dazu führen, dass diese Regelung durch “Übernutzung” Schaden nähme. Auf der anderen Seite bietet die Verdachtssperre eine wirksame Maßnahme zum Beispiel im Fallbeispiel 2, insbesondere wenn die zuständigen Behörden die Maßnahme stützen.

Bei einem begründeten Verdacht sind durch das betroffene Unternehmen in der Regel sofort Maßnahmen mindestens zur Sperrung der betroffenen Partie zu ergreifen, bis der Verdacht geklärt werden kann.

Öko-Kontrollstellen werden Rückstandsfunde regelmäßig nutzen, um im Rahmen weitergehender Recherchen Ursachenforschung zu betreiben. Hierzu gehören Vor-Ort-Begehungen und Dokumentenprüfungen, je nachdem, welche Maßnahme den Umständen des Einzelfalls angemessen ist.
9 Informationsverfahren bei nachgewiesenen Rückständen in Ökoprodukten

Dann, wenn mehrere Handels- oder Verarbeitungsunternehmen und landwirtschaftliche Erzeugerbetriebe, die unter Umständen in verschiedenen EU-Mitgliedsstaaten ansässig sind, bei einem Rückstandsfund betroffen sind, ist es wichtig, dass die Informationen über einen aufgetretenen Rückstandsfall für die beteiligten Öko-Kontrollstellen und ggf. für die zuständigen Behörden bereitgestellt werden. Die Informationen über Rückstandsfunde sollten zu den Kontrollstellen oder -behörden gelangen, die die Ursachen für die Rückstände weiter ermitteln können.

Wenn Öko-Kontrollstellen aus von den Unternehmen mitgeteilten Rückstandsfunden oder aus eigenen Untersuchungsbefunden einen Verdacht nach Anhang III Nr. 9 ableiten, sollte der Sachverhalt mit Hilfe des Formblatts „Standardisiertes Informationssystem“ an die betroffenen zuständigen Behörden und Öko-Kontrollstellen weitergemeldet werden, damit die Ursachen des Rückstandsfunds recherchiert werden können.
10 Beispielhafte Identifikation und Darstellung von Kontaminationswegen

10.1 Verschleppung

10.1.1 Modellversuch Getreidemühle

„Nach der EG-Öko-Verordnung ist vorgeschrieben, dass in Aufbereitungseinheiten wie Mühlen, in denen auch Erzeugnisse konventioneller Herkunft verarbeitet werden, Bio-Produkte nur nach vorhergehender Reinigung verarbeitet werden dürfen. Der Erfolg der Reinigung ist zu überprüfen. Das Vermischen mit konventioneller Ware müsste somit ausgeschlossen werden können.

In einem Modellversuch sollte daher untersucht werden:

1. ob eine Verschleppung des Wachstumsregulators Chlormequat bei unmittelbar aufeinander folgender Mahlung von konventionellem und biologisch erzeugtem Getreide ins Öko-Mahlgut erfolgt und
2. wie groß ggf. eine Spülcharge sein muss, um eine Verschleppung auszuschließen.

In diesem Versuch wurde Weizen der Sorte „Monopol“, der unter Verwendung von Cycocel (Wirkstoff Chlormequat) angebaut wurde und einen Chlormequatgehalt von 0,1 g/kg Weizen aufwies, in der Mühle vermahlen. Unmittelbar im Anschluss daran wurde ökologisch erzeugtes Getreide mit einer Partiegröße von 3,5 t vermahlen. Drei Fraktionen (Mehl Type 550, Grießkleie, Weizenkleie) des nachfolgend vermahlenen Biogetreides wurden in 100-kg-Schritten untersucht. Chlormequat war in der ersten und zweiten 100 kg-Partie in allen drei Fraktionen, in der dritten 100-kg-Partie in zwei Fraktionen nachweisbar. Im Mehl der vierten 100 kg-Partie wurde Chlormequat nur noch in Spuren nachgewiesen (0,002 mg/kg).

Als Konsequenz ergibt sich, dass das Vorkommen von Chlormequat in Öko-Getreideprodukten in der Folge von Verschleppungen vermeidbar ist, wenn eine ausreichende Reinigung durchgeführt wird. Im vorliegenden Fall wurden von einer 3,5 t-Partie Bio-Getreide 400 kg als „Spülschritt“ verwendet.

Weitere Untersuchungen zur Verschleppungsproblematik sollen im Rahmen des Öko-Monitorings durchgeführt werden.

* Für die Möglichkeit der Durchführung des Modellversuchs dankt die CVUA Herrn Unsöld von der Gültsteiner Mühle in Herrenberg-Gültstein ganz herzlich.

Im Jahre 2004 wurde der Versuch wiederholt und die Anzahl der untersuchten Teilchargen erhöht. Hier die Zusammenfassung des Ergebnisses:

Chlormequat war in der ersten 100 kg-Partie in der Mehlfraction in nur geringer Konzentration (< 0,01 mg/kg) nachweisbar, während die 7-te und 8-te Mahlung sowie die Grießkleie (Futtermehl) hohe Gehalte an Chlormequat aufwiesen (0,3 mg/kg). Die Gehalte in der Kleiefraktion sowie der 4-ten Schrotfraktion lagen deutlich niedriger, allerdings oberhalb von 0,01 mg/kg (jeweils 0,03 mg/kg).
In den darauf folgenden 100 kg-Partien nahmen die Gehalte in allen Fraktionen fortlaufend ab, wobei in der vierten 100 kg-Partie Chlormequat nur noch in der 7. und 8. Mahlung (0,02 mg/kg; 0,04 mg/kg) sowie in der Grießkleiefraktion (Futtermehl; 0,01 mg/kg) nachweisbar war.

Dieser Modellversuch bestätigte, dass das Vorkommen von Chlormequat in Öko-Getreideprodukten in der Folge von Verschleppungen vermeidbar ist, sofern eine ausreichende Reinigung durchgeführt wird. Im vorliegenden Fall wurden von einer 3,5 t-Partie Bio-Getreide 400 kg als „Spülschritt“ verwendet.

10.1.2 Schlussfolgerungen

In Getreidemühlen, die konventionelle wie auch biologische Produkte verarbeiten, findet eine Verschleppung statt, die messbar ist, falls die konventionelle Vorpartie mit Pflanzenschutzrückständen behaftet ist. Das Pflanzenschutzmittel Chlormequat (CCC) diente in diesem Versuch als Marker für die konventionelle Vorpartie. Die Rückstandsbelastung ist, wie man erwarten konnte, zu Beginn der Öko-Charge am höchsten und nimmt danach laufend ab. Die Untersuchungen des belasteten konventionellen Getreides ergaben, dass sich Chlormequat vor allem in den Randschichten des Getreides ablagert. Daher konnte im Mehl selbst bereits zu Beginn der Vermahlung kein nennenswerter Rückstandsbefund (< 0,01 mg/kg) ermittelt werden. In den letzten Ausmahlungen (7. und 8. Ausmahlung), bei denen die Randschichten des Getreides erfasst werden, war in den ersten 400 kg der Partie Chlormequat als Rückstand nachweisbar. Im Versuchsbericht wird nicht erläutert, ob vor der Beschickung der Anlage mit dem Bio-Getreide eine Reinigung der Anlage durchgeführt wurde. Es empfiehlt sich in jedem Fall eine gründliche Vorreinigung der Getreideannahme und eine weitgehende Entleerung der Förderanlage vor allem an den kritischen Stellen.

10.2 Abdrift

10.2.1 Abdrift – erste Fallstudie

Tabelle 3: Rückstandsbestände von Weizenpflanzen eines durch Abdrift kontaminierten ökologisch bewirtschafteten Weizenfeldes

<table>
<thead>
<tr>
<th>Proben-Nr.</th>
<th>Wirkstoff</th>
<th>Ergebnis mg/kg</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe 1</td>
<td>Methamidophos</td>
<td>0,21</td>
<td>Probeannahme unmittelbar nach der PSM-Behandlung des angrenzenden Feldes im Randbereich des Weizenfeldes</td>
</tr>
<tr>
<td></td>
<td>Tebuconazol</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>Probe 2</td>
<td>Methamidophos</td>
<td>0,08</td>
<td>Probe wurde 4 Tage später nach 2x Regen mit 30 bzw. 10 L/qm im Randbereich des Weizenfeldes entnommen</td>
</tr>
<tr>
<td></td>
<td>Tebuconazol</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Probe 3</td>
<td>Methamidophos</td>
<td>0,02</td>
<td>Probe wurde 4 Tage später nach 2x Regen mit 30 bzw. 10 L/qm in ca. 3 m Abstand vom Randbereich des Weizenfeldes entnommen</td>
</tr>
<tr>
<td></td>
<td>Tebuconazol</td>
<td>n.n.</td>
<td></td>
</tr>
</tbody>
</table>

n.n. = nicht nachweisbar

Tabelle 4 Untersuchungsergebnisse eines durch Abdrift kontaminierten Öko-Weizenfeldes zum Erntezeitpunkt

<table>
<thead>
<tr>
<th>Proben-Nr.</th>
<th>Wirkstoff</th>
<th>Ergebnis mg/kg</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe 1</td>
<td>Methamidophos</td>
<td>0,02</td>
<td>Probennahme zur Ernte im Randbereich des Weizenfeldes</td>
</tr>
<tr>
<td></td>
<td>Tebuconazol</td>
<td>n.n.</td>
<td></td>
</tr>
<tr>
<td>Probe 2</td>
<td>Methamidophos</td>
<td>n.n.</td>
<td>Probenahme zur Ernte in ca. 3 m Abstand vom Randbereich des Weizenfeldes</td>
</tr>
<tr>
<td></td>
<td>Tebuconazol</td>
<td>n.n.</td>
<td></td>
</tr>
<tr>
<td>Probe 3</td>
<td>Methamidophos</td>
<td>n.n.</td>
<td>Mischprobe des gesamten Weizenfeldes zum Erntezeitpunkt</td>
</tr>
<tr>
<td></td>
<td>Tebuconazol</td>
<td>n.n.</td>
<td></td>
</tr>
</tbody>
</table>

n.n. = nicht nachweisbar
Dieser Fall verdeutlicht, dass abdriftbedingte Kontaminationen von ökologisch bewirtschafteten Feldern aufgrund von benachbarten konventionell bewirtschafteten Feldern zwar zu nachweisbaren Rückständen in den unmittelbar angrenzenden Randbereichen der ökologisch angebauten Kulturen führen können, dass diese Kontamination zumindest bei Flächenkulturen wie dem Getreideanbau aber auf einen geringen Randbereich begrenzt ist und üblicherweise nicht zu deutlichen Rückstandsgehalten in Mischproben des ganzen, ökologisch bewirtschafteten Feldes führt. Im vorliegenden Fall konnte das ökologisch angebaute Getreide trotz der nachgewiesenen abdriftbedingten Pflanzenschutzmitteleinträge im Randbereich aus dem angrenzenden Nachbarfeld uneingeschränkt als ökologisch angebautes Getreide in den Verkehr gebracht werden.

Dies unterstreicht auch, dass der üblicherweise als Beurteilungswert herangezogene maximale Konzentrationswert von 0,01 mg/kg für Pestizidrückstände in ökologisch erzeugten Lebensmitteln sachgemäß ist, insbesondere aufgrund der Tatsache, dass in der Regel Mischproben einer Charge zur Untersuchung kommen.“

10.2.2 Abdrift – zweite Fallstudie

In einem weiteren Bericht wurde für eine Salatkultur eine Abdriftsituation untersucht und begutachtet.

„Beurteilung:

Im Gegensatz zu der ersten, unmittelbar nach der PSM-Anwendung auf dem konventionell bewirtschafteten Nachbarfeld erfolgten Probenahme von noch unreifem Eisbergsalat, konnten zum Zeitpunkt der Ernte des Salats (Probe 2) keine Rückstände des Fungizids Fenpropimorph mehr im Salat nachgewiesen werden. Somit verdeutlichen diese Untersuchungen, dass abdrift-bedingte Kontamination von ökologisch bewirtschafteten Feldern aufgrund von benachbarten konventionell bewirtschafteten Feldern zwar zu
nachweisbaren Rückständen in den unmittelbar angrenzenden Randbereichen der ökologisch angebauten Kulturen führen kann, dass diese Kontamination jedoch auf einen Randbereich begrenzt ist und üblicherweise nicht zu deutlichen Rückstandsgehalten in Mischproben des ganzen, ökologisch bewirtschafteten Feldes führt. Im vorliegenden Fall konnte der ökologisch angebaute Salat trotz der nachgewiesenen abdriftbedingten Pflanzenschutzmitteleinträge im Randbereich uneingeschränkt als ökologisch angebauter Salat in den Verkehr gebracht werden. Im erntereifen Salat waren keine Rückstände mehr nachweisbar. Probleme mit abdrift-bedingten Rückstandsgehalten in ökologisch angebauten pflanzlichen Lebensmitteln sind jedoch dann nicht auszuschließen, wenn aufgrund unterschiedlicher Vegetationszeiten der benachbarten Kulturen die Ernte ökologisch angebauter Pflanzen unmittelbar nach Pflanzenschutzmittelapplikationen in angrenzenden konventionell angebauten Kulturen erfolgen müsste.

Die Ergebnisse unterstreichen jedoch auch, dass der von uns üblicherweise als Beurteilungswert im Hinblick auf nicht-zulässige Pestizidanwendungen herangezogene maximale Rückstandskonzentrationswert von 0,01 mg/kg für Pestizidrückstände in ökologischen Lebensmitteln sachgemäß ist. Hierbei ist zu berücksichtigen, dass im Rahmen der Lebensmittelüberwachung durch repräsentative Beprobung einer gesamten Charge (z.B. der gesamten Salaternte des Feldes durch Vermischung mehrer Salatköpfe (10 Stück)) jeweils die mittlere Rückstandsbelastung ermittelt wird. Da abdrift-bedingte Kontamination jedoch überwiegend auf Randbereiche begrenzt ist, liegt die mittlere Konzentration üblicherweise deutlich unter den möglicherweise in Randbereichen vorliegenden abdrift-bedingten Rückstandskonzentrationswerten.“

10.2.3 Schlussfolgerungen

Die beiden Fallstudien zeigen klar, dass Abdrift ein räumlich begrenztes Problem darstellt. Je nach Stabilität des Wirkstoffs ist auch im betroffenen Randstreifen in der Regel die Belastung nur eine begrenzte Zeit nach der Anwendung nachweisbar. Es können folgende Schlussfolgerungen gezogen werden:

1) Hat die Anwendung ausreichend lange vor der Ernte stattgefunden, kann die Abdrift (je nach Stabilität der untersuchten Wirkstoffe) bei einer repräsentativen Probe der Gesamtpartie häufig nicht mehr nachgewiesen werden. Wird also in einer Erntepartie ein Pflanzenschutzmittelrückstand gefunden, ist genau zu prüfen, ob eine Abdrift als Ursache in Frage kommt. Ein Hinweis für eine Abdrift kann sein, dass eine Anwendung des
Wirkstoffes in der Kultur kaum in Frage kommt, aber in der benachbarten Kultur üblich ist.

Ebenso ist bei einer Abdrift als Ursache eine homogene Einmischung in der Erntepartie nicht wahrscheinlich. Es wird deutlich, dass es sich um komplexe Fragestellungen handelt, die eine differenzierte Einzelfallprüfung erfordern.

2) Soll eine Abdrift-Wirkung festgestellt werden, hat die Probenahme so zeitnah wie möglich nach der Anwendung zu erfolgen. Es empfiehlt sich, eine Probe im betroffenen Randstreifen und ggf. eine Vergleichsprobe aus der Mitte des ökologisch bewirtschafteten Feldstücks.

4) Für eine sachgerechte Interpretation eines Rückstandsbefundes ist eine möglichst präzise und umfassende Beschreibung der Umstände erforderlich bis hin zu Art und Behandlung der Nachbarkultur.

Bei Abdrift handelt es sich um eine räumlich und je nach Stabilität der Wirkstoffe auch zeitlich begrenzte Beeinträchtigung der benachbarten Öko-Partie. Die in den Fallbeispielen untersuchten Erntepartenien wären bei einer Rückstandsuntersuchung nicht auffällig geworden.
11 Zusammenfassung und Ausblick

Identifikation und Darstellung von Informationsquellen zur dynamischen Fortschreibung des Handbuchs

Für eine dynamische Fortschreibung des Handbuchs können die nachfolgenden Quellen herangezogen werden:

12.1 Rechtliche Grundlagen

- Offizieller Verordnungstext der EU-Öko-Verordnung; Verordnung (EWG) Nr. 2092/91
- Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV)
 http://www.bmelv.de / Landwirtschaft / Ökologischer Landbau / EG-Öko-Verordnung und Folgerecht
- Internationale rechtliche Regelungen im ökologischen Landbau
 http://www.oeko-regelungen.de
- Stiftung Ökologie & Landbau: Gesetzliche und privatrechtliche Regelungen
 http://www.soel.de/oekolandbau/richtlinien.html
- Arbeitsgemeinschaft Lebensmittel ohne Gentechnik
 http://www.infoxgen.com
- International Federation of Organic Agriculture Movements
 http://www.ifoam.org
- Konferenz der Kontrollstellen e.V.
 http://www.oeko-kontrollstellen.de
- Rückstandshöchstmengen: Bundesamt für Verbraucherschutz und Lebensmittelsicherheit
 http://www.bvl.bund.de /Pflanzenschutzmittel/Rückstände & Höchstmengen

12.2 Berichte Monitoringsysteme

- Obst- und Gemüse-Monitoring des BNN Herstellung und Handel
 http://www.bnn-monitoring.de
- Öko-Monitoring Baden Württemberg
 http://www.cvuas.de
• Lebensmittel Monitoring des Bundes
 http://www.bvl.bund.de/Lebensmittel/Sicherheit und Kontrollen/Lebensmittel-Monitoring

• EU Food and Veterinary Office: Annual EU-wide Pesticide Residues Monitoring Reports
 http://ec.europa.eu/food/fvo/specialreports/pesticides_index_en.htm

13 Literatur

ANONYMUS, 2005: Opinion of the Scientific Panel on Plant health, Plant protection products and their Residues on a request from Commission related to the appropriate variability factor(s) to be used for acute dietary exposure assessment of pesticide residues in fruit and vegetables. The EFSA Journal, 177, 1-61:

MAHNKE-PLESKER, S. / G. LACH (Hrsg.), 2005: Qualitätsicherung von Öko-Lebensmitteln – Ein Leitfaden für die Praxis, Behr´s Verlag, Hamburg