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Urine deposition on grassland causes significant N2O losses, which in some cases may 

result from increased denitrification stimulated by labile compounds released from 

scorched plant roots. Two 12-day experiments were conducted in 13C-labelled 

grassland monoliths to investigate the link between N2O production and carbon 

mineralization following application of low rates of urine-N. Measurements of N2O 

and CO2 emissions from the monoliths as well as δ13C signal of evolved CO2 were 

done on day -4, -1, 0, 1, 2, 4, 5, 6 and 7 after application of urine corresponding to 3.1 

and 5.5 g N m-2 in the first and second experiment, respectively. The δ13C signal was 

also determined for soil organic matter, dissolved organic C and CO2 evolved by 

microbial respiration. In addition, denitrifying enzyme activity (DEA) and nitrifying 

enzyme activity (NEA) were measured on day -1, 2 and 7 after the first urine 

application event. Urine did not affect DEA, whereas NEA was enhanced 2 days after 

urine application. In the first experiment, urine had no significant effect on the N2O 

flux, which was generally low (-8 to 14 μg N2O-N m-2 h-1). After the second 

application event, the N2O emission increased significantly to 87 μg N2O-N m-2 h-1 

and the N2O emission factor for the added urine-N was 0.18 %. However, the 

associated 13C signal of soil respiration was unaffected by urine. Consequently, the 

increased N2O emission from the simulated low N-urine patches was not caused by 

enhanced denitrification stimulated by labile compounds released from scorched plant 

roots. 
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13C, denitrification, grassland, nitrification, nitrous oxide, root scorching, soil 
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Introduction 

Urine deposited by grazing livestock is a major source of the nitrous oxide (N2O) 

production in European grasslands. At present, N2O emissions from agricultural soils 

account for 5 % of the European release of anthropogenic derived greenhouse gases 

(EEA 2002), and the main processes involved in the production are nitrification and 

denitrification (Firestone and Davidson 1989). The mechanism responsible for the 

increased N2O emission following urine deposition is complex and not well 

understood. Vertès et al. (1997) found that 90 % of the urine patches deposited by 

grazing heifers contained between 3 and 50 g N m-2. Urea (NH2CONH2) is the 

predominant component of urine and typically accounts for over 70 % of the urine-N 

content (Oenema et al. 1997). In the soil, urea is rapidly hydrolysed to NH4
+, OH- and 

HCO3
-, which makes urea-N available for the nitrifying bacteria. However, recent 

studies revealed that urea-derived N only constituted a minor part of the N2O-N 

emitted during the days after urine application (Bol et al. 2004; Clough et al. 2004). 

The major part of N2O-N originated from other sources, e.g. from soil N. Nonetheless, 

studies have shown that the N2O emission increases almost linearly with the amount 

of urine-N deposited (Van Groeningen et al. 2005a, b). Thus, the amount of urine-N 

appears to have an indirect effect on the rate of N2O emission.  

As heterotrophic bacteria play a major role in denitrification, the process is 

strongly dependent on the supply of easily decomposable organic matter, particularly 

in urine patches where N availability is expected to be non-limiting. Root scorching 

due to NH3(aq) formed after urea hydrolysis may result in release of labile carbon 

compounds into the rhizosphere (Shand et al. 2002). Monaghan and Barraclough 

(1993) suggested that these labile compounds stimulate denitrification activity and 
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thereby are part of the reason for the urine-induced N2O emission. However, the 

degree of scorching depends on the amount of NH
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3 formed (Ritchey et al. 2003), 

which is influenced by the amount of urea-N applied, soil pH and the cation exchange 

capacity of the soil (Bolan et al. 2004). The low N2O emission from low N-urine 

patches may, in part, be caused by the lack of root scorching and thereby low 

availability of labile carbon compounds for the denitrifying bacteria.  

In the present 13C-labelling study, we examined the link between N2O 

emission and carbon mineralization following urine application to soil under 13C 

depleted grassland vegetation (i.e. grassland monoliths provided with depleted 

atmospheric CO2 during 2 or 8 weeks). The artificial urine applied simulated a urine 

patch with low N content (3.1 or 5.5 g N m-2). We tested the hypothesis that the low 

N2O emission from low N-urine patches is caused by the lack of root scorching, and 

thus, the lack of increased availability of root-derived C for the denitrifying bacteria. 

Because the plant material was 13C depleted in the grassland monoliths studied, our 

hypothesis implies that the N2O emission should be paralleled by a constant δ13C 

signal of CO2 evolved by soil respiration.  

 

Materials and methods 

 

Grassland monoliths 

The study was conducted in grassland monoliths placed in a 13C-labelling facility at 

Institut National de la Recherche Agronomique (INRA), Clermont-Ferrand, France. 

The former management practise and the experimental facility were described in 

detail by Klumpp (2004). Briefly, in June 2002 the monoliths (50 cm × 50 cm × 40 

cm deep) were taken from an intensively managed semi-natural grassland dominated 
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by perennial ryegrass (Lolium perenne L.), white clover (Trifolium repens L.) and 

Yorkshire fog grass (Holcus lanatus L.). The slightly acidic sandy soil contained 4.1 

% C and 0.42 % N, and the pH
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H2O was 6.6. Monoliths were placed in temperature 

controlled transparent enclosures kept under natural daylight. The enclosures were 

part of an open flow 13C-labelling system, where ambient CO2 was scrubbed and 

replaced by fossil fuel derived CO2, which is depleted in 13C. Starting 22 April 2003, 

plants were provided with CO2 having a δ13C signal of about -21.5 ‰. The external 

climate (PAR, temperature and humidity) and temperature of each enclosure was 

monitored continuously.  

 

Urine treatment 

To simulate grazing, the vegetation of six monoliths was cut to a height of 6 cm on 22 

April and 9 June. Two weeks after the first cut (viz. on 7 May) and one week after the 

second cut (viz. on 16 June) urine was evenly applied on three of the monoliths using 

a watering can (Day 0). The three remaining monoliths were controls and received 

urine at the end of each experiment. The artificial urine was prepared using the recipe 

described by Doak (1952). The urine had a total N content of 0.7 g N l-1 and consisted 

of urea (1.12 g l-1), hippuric acid (0.42 g l-1), allantoin (0.18 g l-1) and creatinine (0.09 

g l-1) and pH was adjusted to 7 with NaOH. Delta 13C of each urine component was 

determined on an elemental analyser (EA1110, Carlo Erba, Milano, IT) coupled in 

continuous flow mode to an isotope ratio mass spectrometer (IRMS; FinniganMAT 

Delta plus, Bremen, DE). The amount of N applied via urine corresponded to 3.1 g N 

m-2 at the first application event and 5.5 g N m-2 at the second event. To keep soil 

moisture constant, the monoliths were irrigated every evening with a total amount of 
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108 and 128 mm water during the first and the second 12-day experiment, 

respectively. 

 

Gas and soil sampling in monoliths 

About four weeks prior to urine application, small white chambers consisting of two 

3-cm diameter PVC pipes (80 ml) and three 5-cm diameter PVC pipes (112 ml) were 

installed in each monolith between the plants. Every pipe was connected to a three-

way sampling valve on the outside of the enclosure via a 75 cm silicon tube. The 

sampling valve was fitted with a 5 ml syringe and a needle. Starting four days before 

urine application (Day -4), below-ground production of N2O and CO2 as well as the 

δ13C of the evolved CO2 were determined by use of the static chamber method. 

Measurement of CO2 emission was done between 11 am and 1 pm by briefly lifting 

the enclosures to seal the 3-cm pipes with rubber stoppers for 40 minutes. One 2-ml 

gas sample was collected via the external valves after 0, 20 and 40 minutes of 

incubation. To measure N2O emission, the 5-cm pipes were sealed by rubber stoppers 

for 90 minutes between 1:30 and 4:30 pm. Two 2-ml gas samples were taken at the 

beginning and at the end of the incubation period. A volume of N2 equal to the sample 

volume was added to the pipe before each gas sampling to maintain atmospheric 

pressure. All samples were stored in 2-ml crimp-seal vials, which had been evacuated 

before use. After penetration by a needle the vials were sealed with Terostat IX to 

allow long-term storage. Determination of gas emissions from urine-treated and 

control monoliths was done on day -4, -1, 0, 1, 2, 4, 5, 6 and 7 after urine application. 

Furthermore, δ13C of the evolved CO2 was measured once before the labelling started. 

Two days after urine application, two soil cores (0-10 cm depth, 2 cm diameter) 

were collected in each monolith for chemical analyses and determination of microbial 
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respiration. Sampling holes were closed with cement filled PVC tubes to prevent 

aeration of the soil and drainage of water. The two soil samples from each monolith 

were pooled. Roots and stubbles were removed by tweezers during a period of one 

hour per sample. 

 

Destructive harvest of monoliths 

To measure the δ13C signal of unlabelled and 13C-labelled plant material, four 

monoliths were harvested on 5 May (unlabelled) and 10 June 2003 (13C-labelled). 

Root samples from the 0-10 cm soil layer were obtained by wet sieving of air-dried 

soil slices (40 cm × 6 cm × 10 cm). Root samples and plant shoot samples were oven-

dried at 60 °C for 48 h, ground and analysed for δ13C on the elemental analyser and 

IRMS. On 5 May, samples of 40 g fresh ‘root free’ soil were obtained by sieving (2 

mm) and removing roots by tweezers for 40 minutes per sample in order to measure 

δ13C of unlabelled soil C pools. 

 

Soil analyses 

Within 36 hours of soil sampling or destructive harvest, two 10 g portions of each 

fresh ‘root free’ soil sample were extracted in 1 M KCl (1:5, w:vol), stirred on a 

rotary shaker for one hour (only one portion on 5 May).  The extracts were filtered 

through Whatman 40 filters and kept at -20 °C until further analysis. Concentration of 

ammonium and nitrate in the extracts were analysed colorimetrically on an 

autoanalyzer (Bran+Luebbe, Norderstedt, DE). Dissolved organic carbon (DOC) in 

the extracts was measured on a TOC/TN analyzer (Formacs, Skalar, Breda, NL). To 

determine δ13C of DOC, 10 ml of each extract was freeze-dried for 2 days, and the 

solid residue was then analysed for δ13C on the elemental analyser and IRMS.  
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To establish the δ13C of CO2 evolved by microbial respiration, 10 g portions of 

fresh ‘root free’ soil were incubated for 24 h at 25 °C in 250 ml screw capped serum 

bottles mounted with rubber stoppers. Empty bottles were included as controls. Gas 

samples for determination of CO
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2 concentration and δ13C of CO2 were taken after 0 

(ambient), 1, 3, 10 and 24 hours of incubation and stored in 2-ml vials. A volume of 

N2 equal to the sample volume was added to the bottle before each gas sampling.  

Soil pH was determined in a 10:25 (w:vol) suspension of fresh soil in distilled 

water (not soil from 5 May). The remaining of the ‘root free’ soil was air-dried and 

analysed for δ13C on the elemental analyser and IRMS. In addition, total C and total N 

was measured on soil samples from 5 May.  

 

Gas analyses 

To measure N2O concentrations, the vials were pressurized by adding 2 ml N2 before 

analysis by gas chromatography (GC-14B, Shimadzu, Kyoto, JP). The samples for 

CO2 determination were added 0.5 ml N2 and the concentrations were established by 

gas chromatography (HP 6890, Agilent, Palo Alto, US). The δ13C of CO2 was 

determined following condensation in two successive cool traps (liquid N2) and 

chromatographically separation of CO2 on a trace gas preparation-concentration unit 

(PreCon FinniganMAT, Bremen, DE) coupled in continuous flow mode to the IRMS. 

Gas samples were analysed for CO2, N2O and δ13C of CO2 within 26, 36 and 61 days 

of sampling, respectively. 

 

Denitrifying and nitrifying enzyme activities 

To determine denitrifying and nitrifying enzyme activities, two soil cores (0-10 cm 

depth, 2 cm diameter) were collected in each monolith on day -1, 2 and 7 after the 
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first urine application. The two soil samples from each monolith were pooled and the 

soil was sieved (2 mm). 

Denitrifying enzyme activity (DEA) was measured on the fresh soil samples 

over a short period according to Smith and Tiedje (1979) (for details, see Patra et al. 

2005). Briefly, 10 g (equivalent oven-dried) soil was placed into 150 ml flasks, and 

KNO3 (200 µg NO3-N g-1 dry soil), glucose (0.5 mg C g-1 dry soil) and glutamic acid 

(0.5 mg C g-1 dry soil) was added. The atmosphere of each flask was evacuated and 

replaced by a 90:10 He-C2H2 mixture. During incubation at 26 °C, gas samples (200 

µl) were taken after 4 and 6 hours and immediately analysed for N2O by 

chromatography (Varian, STAR 3400 CX, Walnut Creek, US). 

Nitrifying enzyme activity (NEA) was measured according to Lensi et al. 

(1986). For each fresh soil sample, two sub samples (equivalent to 10 g oven-

dried) were placed in 150 ml flasks. One sub sample was used to estimate the 

initial soil NO3
- content. This sub sample was supplied with 6 ml of a suspension 

containing a denitrifying organism (Pseudomonas fluorescens, O.D. 580 nm = 2) 

in a solution of glucose and glutamic acid (final soil C concentration for each: 0.5 

mg C g-1 dry soil). The atmosphere in the flask was replaced by a He-C2H2 mixture 

(90-10) and N2O accumulation was measured until soil NO3
- was converted fully 

to N2O. The other sub sample was used to determine potential NO3
- accumulation. 

In this case, 4 ml of a (NH4) 2SO4 solution was added (final concentration 200 µg 

N g-1 dry soil). Water was added to achieve 70 % water holding capacity. After 

aerobic incubation (7 h at 26 °C), which allows nitrate to accumulate, the soil 

samples were enriched with Pseudomonas fluorescens and incubated as described 

above. Nitrous oxide was analysed on a Varian STAR 3400 gas chromatograph. 
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Calculations and statistics 219 
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Nitrifying enzyme activity was computed by subtracting the nitrate initially present in 

the soil from that present after aerobic incubation. All results on 13C/12C ratios are 

reported using the δ13C notation, i.e.: 

δ13C (‰) = 1000 × (Rsample / Rstandard - 1), 

where R = 13C/12C. Internal standards were used to check and correct for changes in 

N2O, CO2 and δ13C of CO2 between time of sampling and analysis. The emission of 

N2O and CO2 were calculated using linear regression and the δ13C of the evolved CO2 

was established by Keeling plots (Keeling 1958). To simplify, δ13C of CO2 from soil 

respiration and microbial respiration are referred to as δ13C of soil respiration and 

microbial respiration, respectively.  

In general, the mean of the results obtained in each monolith was used, which 

gives 3 replicates. Some data are reported as the overall mean ± standard error. 

Analysis of variance (ANOVA), analysis of covariance (ANCOVA) and Tukey’s 

multiple comparison tests (α = 0.05) were performed using SAS General Linear 

Model procedure (SAS Institute 1997). Furthermore, ANCOVAs were performed 

with SAS Mixed Model procedure on the repeated measurements of N2O, CO2 and 

δ13C of CO2 using means of the measurements on day -4 and -1 before urine 

application as covariate (δ13C of CO2 after the first application, covariate not 

included). The ANCOVAs for CO2 emission after the first application and N2O 

emission after the second application were performed on log transformed data.  
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Irrigation and temperature 

The distributions of the 108 and 128 mm water given in the first and the second 

experiment, respectively, appear from Figure 1. Air temperature in the enclosures 

during gas measurement ranged between 15 and 27 ºC in the first experiment (data not 

shown). In the second experiment, the temperature was on average 12 ºC higher (P < 

0.0001) and varied between 26 and 40 ºC. Air temperature did not differ between time 

of CO2 and N2O measurements (P = 0.14). 

 

N2O emission 

Homogeneity of variance was not obtained despite transformation when testing the 

emission of N2O after the first urine application. Thus, no statistical analysis was 

performed on the N2O data from the first experiment. Application of urine appeared to 

have no significant effect on the N2O flux from the grassland monoliths in the first 

experiment (3.1 g N m-2; Fig. 2 A). Overall the flux of N2O was very low during the 

first experiment, varying between -8 and 14 μg N2O-N m-2 h-1. 

In contrast, urine application equivalent to 5.5 g N m-2 in the second experiment 

had a significant effect on the N2O emission (P = 0.047), which increased to 87 ± 57 

μg N2O-N m-2 h-1 (Fig. 2 B). The emission remained elevated for at least 8 days, but 

declined gradually with time (P = 0.049).  

 

Respiration and δ13C of respiration 

Urine application had a significant effect on the amount of CO2 emitted from the 

grassland monoliths in the two experiments (P ≤ 0.040; Fig. 3). A peak in the CO2 
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emission took place on the day of application, which was probably mainly caused by 

the hydrolysis of urea, resulting in formation of HCO
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Mean δ13C of soil respiration determined in the grassland monoliths during the 

study was -28.5 ‰. No decline in δ13C of soil respiration was observed following 

urine application (Fig. 4) and urine had no significant effect on the 13C signal (P ≥ 

0.16). The CO2 peak on the day of urine application that partly derived from 

hydrolysis of urea (δ13C -34 ‰) did only affect the δ13C of soil respiration in the first 

experiment, where δ13C of CO2 from the urine treatment dropped significantly below 

that of the control on the day of application (Fig. 4 A). The 13C signal of soil 

respiration increased following days with high irrigation, viz. day -1 and 5 in the first 

experiment (Fig. 1, 4 A). On day 5 after the first application event, the CO2 emission 

increased as well (Fig. 3 A).  

The rate of microbial respiration measured on ‘root free’ soil samples in the 

laboratory did not change over the course of the study or between treatments (P ≥ 

0.79) and the mean rate was 3.4 ± 0.2 μg CO2-C g-1 dry soil h-1 (data not shown). 

Delta 13C of microbial respiration established on the ‘root free’ soil samples was 

stable during the study (P = 0.38; Fig. 5) and the urine treatment had no significant 

effect on the 13C signal (P = 0.72). 

 

Delta 13C of other C pools 

Delta δ13C of plant shoot and root measured just before the second experiment 

revealed that the vegetation had been significantly labelled (P < 0.0001; Fig. 5). 

However, the shoot material was more depleted than the roots. Delta 13C of DOC 

tended to decrease over the course of the study (P = 0.078; Fig. 5). Furthermore, δ13C 

of soil organic matter (SOM) declined significantly during the period from the start of 
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labelling to the first experiment (P = 0.05). The urine treatment had no effect on δ13C 

of DOC and SOM (P ≥ 0.22). In general, δ
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13C of DOC differed from δ13C of soil 

respiration measured at the start of labelling and on day 2 after urine application (P = 

0.05), whereas δ13C of SOM and microbial respiration was rather similar (P > 0.05). 

 

Denitrifying and nitrifying enzyme activities 

Measurements of DEA (Fig. 6 A) and NEA (Fig. 6 B) revealed that the monoliths 

used for the urine treatment and the control in the first experiment differed 

significantly before urine was applied (P ≤ 0.020). This difference was accounted for 

in the statistical analyses by including the measurements before urine application as 

covariate. Urine had no effect on DEA when measured on day 2 and 7 after 

application (P = 0.88). In contrast, NEA appeared to increase following urine 

application. However, due to the number of replicates (two or three), the effect of 

urine on NEA was not statistically significant (P = 0.17).  

 

Inorganic N, DOC and soil pH 

The content of soil inorganic N in the 0-10 cm soil layer measured on day 2 after 

urine application did not differ between the two experiments (P = 0.76) and was 

significantly higher in the urine treatment (1.46 g N m-2) than in the control (0.49 g N 

m-2; P = 0.042) (data not shown). The increased level of inorganic N in the urine 

treatment was almost exclusively caused by a rise in the NH4
+ content. The NO3

- 

content was below the detection limit in the first experiment and had a mean value of 

0.05 g N m-2 (0-10 cm soil layer) in the second experiment. 

The content of DOC in the upper 0-10 cm of the soil was similar in the urine 

treatment and the control (17.8 g C m-2; P = 0.88). Despite urea hydrolysis, no pH 
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increase was observed in the urine treated soil when measured on day 2 after 

application (P = 0.23; data not shown). 

 

Discussion 

 

Increased N2O emission after urine application 

According to the peaks in CO2 emission (Fig. 3), urea hydrolysis was completed 

within 24 hours, which is in line with results obtained in other studies (Petersen et al. 

1998; Bol et al. 2004). In the first experiment in May, urine application corresponding 

to 3.1 g N m-2 did not lead to a significant increase of the N2O emission (Fig. 2 A). In 

contrast, the N2O emission increased significantly following urine application 

equivalent to 5.5 g N m-2 in the second experiment in June (Fig. 2 B). 

A possible reason for the larger N2O emission in the second experiment 

compared to the first could be the temperature, which was about 12 ºC higher in the 

second experiment (mean 34 ºC). Christensen (1983) found that the Q10 value for N2O 

production in soil was 2-3. The emission on the day of urine application was 6-fold 

higher in the second experiment than it was in the first, which suggests that the 

difference in N2O production between the two experiments was too big to be 

accounted for by a temperature effect only. The different responses at the two 

application events may be explained partly by the larger amount of N added in the 

second experiment (5.5 vs. 3.1 g N m-2). Furthermore, nitrifying bacteria may 

compete with plants for NH4
+ (Verhagen et al. 1995; Kaye and Hart 1997). Compared 

to plant growth in May, the growth rate was reduced during the second experiment in 

June. Thus, probably the plants left more inorganic N for the nitrifying and 
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denitrifying bacteria in the second experiment, which enabled increased N2O 

production. 

Maximum N2O emission measured was 87 ± 57 μg N2O-N m-2 h-1. In 

comparison, Williamson and Jarvis (1997) measured emission of 600 μg N2O-N m-2 

h-1 after application of similar amounts of urine-N (6 g N m-2) to a grassland on poorly 

drained silty clay loam in November. However, the sandy soil and moderate soil 

moisture in the present study offered less favourable conditions for N2O production, 

which largely explains the lower emission. More generally, relative N2O emission at 

peak emission date (i.e. N2O emission expressed per unit of applied urine-N) 

computed from published data (Allen et al. 1996; Clough et al. 1996; Yamulki et al. 

1998; Bol et al. 2004; Van Groenigen et al. 2005b) varied between 2 and 123 μg N2O-

N h-1 g-1 urine-N. The median of these observations (n = 15) is 17 μg N2O-N h-1 g-1 

urine-N, which is close to the relative N2O emission of 16 μg N2O-N h-1 g-1 urine-N 

observed in our study. 

Assuming an N loss of 20 % due to NH3 volatilization and nitric oxide (NO) 

emission (IPCC 1997), the N2O emission factor for the added urine-N measured over 

the 8 days was 0.18 ± 0.08 %. In the study by Williamson and Jarvis (1997), where a 

similar amount of urine-N was applied, the N2O emission factor measured over 37 

days was 5 % (De Klein et al. 2001). According to the guidelines issued by the 

Intergovernmental Panel on Climate Change (IPCC 1997), the N2O emission from 

urine deposited by grazing livestock should be calculated as 2 % of the N remaining 

after NH3 volatilization and NO emission, which are assumed to account for 20 % of 

the total N content. However, a review of 10 field studies showed that median N2O 

emission factor of real urine was 0.9 % (Van Groenigen et al. 2005a), and the present 

study supports a reduction of the IPCC default emission factor as well.  
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Assessment of the possible link between N2O production and availability of root-

derived C in urine patches 

Urine deposition by grazing livestock is known to trigger significant N2O production, 

but the mechanisms involved are very complex and not well understood. It has been 

suggested that labile compounds released from scorched plant roots stimulate 

denitrification activity, and thus is part of the reason for the increased N2O emission 

following urine deposition (Monaghan and Barraclough 1993). We propose that the 

small increase in N2O emission from low N-urine patches partly is caused by the lack 

of root scorching and associated release of labile carbon compounds. The aim of the 

present study was to test this hypothesis by assessing the source of CO2 emitted 

following application of a low rate of urine-N. If the increased N2O emission were a 

result of higher denitrifying activity due to a supply of labile compounds released 

from scorched plant roots (more depleted than other soil C pools in the monoliths 

studied), then δ13C of soil respiration would be expected to decline after urine 

application. In line with the hypothesis, the increased N2O emission in the second 

experiment was not related to increased mineralization of plant-derived C, viz. δ13C of 

soil respiration was unaffected by the urine application (Fig. 4 B). The plant material 

may have been inadequately 13C-labelled in order to trace plant-derived C in other C 

pools. However, the result may indicate that no significant root scorching occurred 

following urea hydrolysis. Lack of urine-effect on other soil C measures (i.e. δ13C of 

microbial respiration, soil content and δ13C of DOC) supported that root scorching 

was probably negligible. The urine compounds remaining after urea hydrolysis 

(hippuric acid, creatinine and allantoin; δ13C -26 ‰) did not affect the results on δ13C 
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of DOC because of their low amount (< 3 g C m-2 vs. 17.8 g DOC-C m-2 in the 0-10 

cm soil layer). 
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More generally, the urine-induced rise in N2O emission was not linked to an 

increase of soil respiration. The same result appears from a study by Bol et al. (2004), 

where urine was applied corresponding to 23 or 40 g urea-N m-2. In contrast, Lovell 

and Jarvis (1996) found that soil respiration increased significantly following 

application of urine equivalent to about 20 g N m-2. 

Our results show that application of 5.5 g urine-N m-2 gave rise to a NH3(aq) 

concentration in the soil solution that did not cause significant scorching of the roots 

and, thus, that root scorching could not be responsible for the urine-induced N2O 

emission from the simulated low N-urine patch. In contrast, a related study 

demonstrated that application of a high rate of urine-N (50.9 g N m-2) significantly 

increased the mineralization of plant-derived C, possibly as a result of root damage 

due to scorching (P. Ambus, personal communication). 

 

Alternative processes explaining the urine-induced N2O emission 

The concentration of N in livestock urine may vary between 1 and 20 g N l-1 (Oenema 

et al. 1997), thus the concentration used in the present study (0.7 g N l-1) was in the 

lower end of this range. A nitrogen concentration of urine above 16 g N l-1 leads to 

microbial stress due to NH3(aq) and low osmotic potential, and thereby to inhibition of 

nitrification (Monaghan and Barraclough 1992; Bol et al. 2004). The low urine-N 

concentration in the present study means that nitrification most likely occurred, and 

the process might play a major role in the increase in N2O emission. This view is 

supported by the apparent increase of NEA in the urine treated soil during the first 

experiment (Fig. 6) and the presence of soil NO3
- on day 2 after the second 
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application event. Hence, the elevated N2O emission immediately following urine 

application was probably caused by a rapid nitrification-denitrification turnover of 

urea-derived N. This mechanism is different from that following application of higher 

rates of urine-N, where nitrification is typically inhibited for a couple of days 

(Monaghan and Barraclough 1992; Bol et al. 2004). 

In conclusion, the increased N2O emission following urine application at rates 

up to 5.5 g N m-2 was not caused by enhanced denitrification stimulated by an 

increased availability of labile plant compounds. Furthermore, strong competition for 

inorganic N between plants and microorganisms combined with low urine-N rates 

limited the N2O loss from this semi-natural grassland. 
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Figure 1. Distribution of irrigation during the first and second experiment. 522 
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Figure 2. Emission of N2O from the urine treatment and the control during (A) the 

first experiment and (B) the second experiment; n = 3; means ± SE. 

 

Figure 3. Emission of CO2 from the urine treatment and the control during (A) the 

first experiment and (B) the second experiment; n = 3; means; the bars indicate the 

Minimum Significant Difference. 

 

Figure 4. Delta 13C of CO2 evolved by soil respiration in the urine treatment and the 

control during (A) the first experiment and (B) the second experiment; n = 3; means ± 

SE. a Urine, n = 1; control, n = 2. b One outlying sub measurement was not included.  

 

Figure 5. Delta 13C of dissolved organic C (DOC), soil organic matter (SOM) and 

CO2 evolved by microbial respiration (MR) and soil respiration (SR) determined at 

the start of labelling and on day 2 of the first and second experiment, as well as δ13C 

of root and shoot determined at the start of labelling and on day -6 of the second 

experiment; n = 4-6; means ± SE. 

 

Figure 6. (A) Denitrifying enzyme activity, DEA, and (B) nitrifying enzyme activity, 

NEA, in the urine treatment and the control on day -1, 2 and 7 after the first urine 

application event; n = 2-3; means ± SE. 
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